Polynomial basis multiplication over GF(2m)

被引:30
作者
Erdem, Serdar S. [1 ]
Yamk, Tugrul
Koc, Cetin K.
机构
[1] Gebze Inst Technol, Dept Elect Engn, Gabze, Kocaeli, Turkey
[2] Fatih Univ, Dept Comp Engn, Istanbul, Turkey
[3] Istanbul Commerce Univ, Informat Secur Res Ctr, Istanbul, Turkey
关键词
finite fields; binary fields; computer arithmetic; modular multiplication; modular reduction;
D O I
10.1007/s10440-006-9047-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we describe, analyze and compare various GF(2(m)) multipliers. Particularly, we investigate the standard modular multiplication, the Montgomery multiplication, and the matrix-vector multiplication techniques.
引用
收藏
页码:33 / 55
页数:23
相关论文
共 14 条
[1]   Mastrovito multiplier for general irreducible polynomials [J].
Halbutogullari, A ;
Koç, ÇK .
IEEE TRANSACTIONS ON COMPUTERS, 2000, 49 (05) :503-518
[2]   MODULAR CONSTRUCTION OF LOW COMPLEXITY PARALLEL MULTIPLIERS FOR A CLASS OF FINITE-FIELDS GF(2(M)) [J].
HASAN, MA ;
WANG, MZ ;
BHARGAVA, VK .
IEEE TRANSACTIONS ON COMPUTERS, 1992, 41 (08) :962-971
[3]   STRUCTURE OF PARALLEL MULTIPLIERS FOR A CLASS OF FIELDS GF(2M) [J].
ITOH, T ;
TSUJII, S .
INFORMATION AND COMPUTATION, 1989, 83 (01) :21-40
[4]   Montgomery Multiplication in GF(2k) [J].
Koç Ç.K. ;
Acar T. .
Designs, Codes and Cryptography, 1998, 14 (1) :57-69
[5]  
Lidl R., 1994, INTRO FINITE FIELDS
[6]  
Mastrovito E. D., 1988, P 6 INT C APPL ALG A, P297
[7]  
Menezes AJ., 1997, HDB APPL CRYPTOGRAPH
[8]  
MENEZES AJ, 1994, APPL FINITE FIELDS
[9]   Low complexity bit parallel architectures for polynomial basis multiplication over GF(2m) [J].
Reyhani-Masoleh, A ;
Hasan, MA .
IEEE TRANSACTIONS ON COMPUTERS, 2004, 53 (08) :945-959
[10]   Mastrovito multiplier for all trinomials [J].
Sunar, B ;
Koç, ÇK .
IEEE TRANSACTIONS ON COMPUTERS, 1999, 48 (05) :522-527