Pattern recognition analysis for 1H NMR spectra of plasma from hemodialysis patients

被引:11
|
作者
Fujiwara, Masako [1 ,3 ]
Kobayashi, Takeshi [1 ]
Jomori, Takahiro [2 ]
Maruyama, Yutaka [3 ]
Oka, Yoshitomo [4 ]
Sekino, Hiroshi [5 ]
Imai, Yutaka [1 ,3 ]
Takeuchi, Kazuhisa [1 ,5 ]
机构
[1] Tohoku Univ, Grad Sch Pharmaceut Sci, Aoba Ku, Sendai, Miyagi 9808578, Japan
[2] Tohoku Univ, Fac Pharmaceut Sci, Sendai, Miyagi 9808578, Japan
[3] Tohoku Univ, 21st Century COE Program CRESCENDO, Sendai, Miyagi 9808578, Japan
[4] Tohoku Univ, Grad Sch Med, Div Mol Metab & Diabet, Sendai, Miyagi 9808578, Japan
[5] CKD Ctr, Koujinkai Cent Hemodialysis Clin, Sendai, Miyagi, Japan
关键词
Lactate; Acetate; TMAO; PCA; Renal failure; Metabolomics; PROTON MAGNETIC-RESONANCE; METABOLIC CHARACTERIZATION; RENAL-FAILURE; SPECTROSCOPY; URINE; TRIMETHYLAMINE; MODEL; CLASSIFICATION; DAMAGE;
D O I
10.1007/s00216-009-2830-9
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
H-1 NMR spectroscopic and pattern recognition-based methods (NMR-PR) were applied to the metabolic profiling studies on hemodialysis (HD). Plasma samples were collected from 37 patients before and after HD and measured by 600 MHz NMR spectroscopy. Each spectrum was data-processed and subjected to principal component analysis for pattern recognition. Spectral patterns of plasma between pre-and post-dialyses were clearly discriminated, together with significant fluctuations in the levels of creatinine, trimethylamine-N-oxide, glucose, lactate, and acetate, which were quantitated. We have first observed the significant elevation of lactate levels in post-dialysis plasma. The present study has demonstrated the high feasibility of NMR-PR method for monitoring the dialysis condition and comprehensive profiling of the change of low-molecular-weight metabolites in HD.
引用
收藏
页码:1655 / 1660
页数:6
相关论文
共 50 条
  • [41] ASICS: an automatic method for identification and quantification of metabolites in complex 1D 1H NMR spectra
    Tardivel, Patrick J. C.
    Canlet, Cecile
    Lefort, Gaelle
    Tremblay-Franco, Marie
    Debrauwer, Laurent
    Concordet, Didier
    Servien, Remi
    METABOLOMICS, 2017, 13 (10)
  • [42] Metabolic fingerprinting in breast cancer stages through 1H NMR spectroscopy-based metabolomic analysis of plasma
    Suman, Shankar
    Sharma, Raj Kumar
    Kumar, Vijay
    Sinha, Neeraj
    Shukla, Yogeshwer
    JOURNAL OF PHARMACEUTICAL AND BIOMEDICAL ANALYSIS, 2018, 160 : 38 - 45
  • [43] MCR-ALS analysis of 1H NMR spectra by segments to study the zebrafish exposure to acrylamide
    Yolanda Pérez
    Marta Casado
    Demetrio Raldúa
    Eva Prats
    Benjamín Piña
    Romà Tauler
    Ignacio Alfonso
    Francesc Puig-Castellví
    Analytical and Bioanalytical Chemistry, 2020, 412 : 5695 - 5706
  • [44] Quantitative Quantum Mechanical Spectral Analysis (qQMSA) of 1H NMR spectra of complex mixtures and biofluids
    Tiainen, Mika
    Soininen, Pasi
    Laatikainen, Reino
    JOURNAL OF MAGNETIC RESONANCE, 2014, 242 : 67 - 78
  • [45] Metabolites from cerebrospinal fluid in aneurysmal subarachnoid haemorrhage correlate with vasospasm and clinical outcome:: a pattern-recognition 1H NMR study
    Dunne, VG
    Bhattachayya, S
    Besser, M
    Rae, C
    Griffin, JL
    NMR IN BIOMEDICINE, 2005, 18 (01) : 24 - 33
  • [46] Performance Evaluation of Algorithms for the Classification of Metabolic 1H NMR Fingerprints
    Hochrein, Jochen
    Klein, Matthias S.
    Zacharias, Helena U.
    Li, Juan
    Wijffels, Gene
    Schirra, Horst Joachim
    Spang, Rainer
    Oefner, Peter J.
    Gronwald, Wolfram
    JOURNAL OF PROTEOME RESEARCH, 2012, 11 (12) : 6242 - 6251
  • [47] MCR-ALS analysis of 1H NMR spectra by segments to study the zebrafish exposure to acrylamide
    Perez, Yolanda
    Casado, Marta
    Raldua, Demetrio
    Prats, Eva
    Pina, Benjamin
    Tauler, Roma
    Alfonso, Ignacio
    Puig-Castellvi, Francesc
    ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2020, 412 (23) : 5695 - 5706
  • [48] Cluster Analysis Statistical Spectroscopy for the Identification of Metabolites in 1H NMR Metabolomics
    Heinzmann, Silke S.
    Waldenberger, Melanie
    Peters, Annette
    Schmitt-Kopplin, Philippe
    METABOLITES, 2022, 12 (10)
  • [49] Identification and quantification of metabolites in 1H NMR spectra by Bayesian model selection
    Zheng, Cheng
    Zhang, Shucha
    Ragg, Susanne
    Raftery, Daniel
    Vitek, Olga
    BIOINFORMATICS, 2011, 27 (12) : 1637 - 1644
  • [50] Factors affecting the robustness of metabolite fingerprinting using 1H NMR spectra
    Defernez, M
    Colquhoun, IJ
    PHYTOCHEMISTRY, 2003, 62 (06) : 1009 - 1017