The relation between Euclidean and Lorentzian 2D quantum gravity

被引:41
|
作者
Ambjorn, J
Correia, J
Kristjansen, C
Loll, R
机构
[1] Niels Bohr Inst, DK-2100 Copenhagen O, Denmark
[2] Max Planck Inst Gravitati Phys, Albert Einstein Inst, D-14476 Golm, Germany
关键词
2D gravity; random triangulations; Lorentzian triangulations; transfer matrix formalism; random walk; branched polymers;
D O I
10.1016/S0370-2693(00)00058-7
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Starting from 2D Euclidean quantum gravity, we show that one recovers 2D Lorentzian quantum gravity by removing all baby universes. Using a peeling procedure to decompose the discrete, triangulated geometries along a one-dimensional path, we explicitly associate with each Euclidean space-time a (generalized) Lorentzian space-time. This motivates a map between the parameter spaces of the two theories, under which their propagators get identified. In two dimensions, Lorentzian quantum gravity can therefore be viewed as a "renormalized" version of Euclidean quantum gravity. (C) 2000 Elsevier Science B.V. Ail rights reserved.
引用
收藏
页码:24 / 32
页数:9
相关论文
共 20 条
  • [1] Integrable 2D Lorentzian gravity and random walks
    Di Francesco, P
    Guitter, E
    Kristjansen, C
    NUCLEAR PHYSICS B, 2000, 567 (03) : 515 - 553
  • [2] Validation of the Ability of Full Configuration Interaction Quantum Monte Carlo for Studying the 2D Hubbard Model
    Yun, Su-Jun
    Dong, Tie-Kuang
    Zhu, Shi-Ning
    CHINESE PHYSICS LETTERS, 2017, 34 (08)
  • [3] Chemical Subdiffusivity of Critical 2D Percolation
    Ganguly, Shirshendu
    Lee, James R.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2022, 389 (02) : 695 - 714
  • [4] Cell Migration in 1D and 2D Nanofiber Microenvironments
    Estabridis, Horacio M.
    Jana, Aniket
    Nain, Amrinder
    Odde, David J.
    ANNALS OF BIOMEDICAL ENGINEERING, 2018, 46 (03) : 392 - 403
  • [5] Cell Migration in 1D and 2D Nanofiber Microenvironments
    Horacio M. Estabridis
    Aniket Jana
    Amrinder Nain
    David J. Odde
    Annals of Biomedical Engineering, 2018, 46 : 392 - 403
  • [6] Numerical simulations of 2D fractional subdiffusion problems
    Brunner, Hermann
    Ling, Leevan
    Yamamoto, Masahiro
    JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (18) : 6613 - 6622
  • [7] 2D conditional simulation of channels on wells using a random walk approach
    Wang, Jiahua
    Wang, Xiangbo
    Ren, Changlin
    COMPUTERS & GEOSCIENCES, 2009, 35 (03) : 429 - 437
  • [8] Understanding the Non-Gaussian Nature of Linear Reactive Solute Transport in 1D and 2D
    Uffink, Gerard
    Elfeki, Amro
    Dekking, Michel
    Bruining, Johannes
    Kraaikamp, Cor
    TRANSPORT IN POROUS MEDIA, 2012, 91 (02) : 547 - 571
  • [9] THE STUDY OF PHASE TRANSITION BY PERIODIC DISTRIBUTION OF BIMODAL BONDS IN 2D POTTS MODEL
    Yasar, Fatih
    Dilaver, Mehmet
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2009, 20 (02): : 223 - 236
  • [10] A random 2D walk of a submerged free-floating disc in a convective layer
    Frick, Peter
    Popova, Elena
    Sukhanovskii, Andrei
    Vasiliev, Andrei
    PHYSICA D-NONLINEAR PHENOMENA, 2023, 455