Semi-cardinal interpolation and difference equations: From cubic B-splines to a three-direction box-spline construction

被引:7
作者
Bejancu, Aurelian
机构
[1] Kuwait Univ, Dept Math & Comp Sci, Kuwait 13060, Kuwait
[2] Univ Leeds, Dept Math Appl, Leeds LS2 9JT, W Yorkshire, England
关键词
multivariable interpolation; box-splines; boundary conditions; difference equations; Wiener-Hopf;
D O I
10.1016/j.cam.2005.10.026
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper considers the problem of interpolation on a semi-plane grid from a space of box-splines on the three-direction mesh. Building on a new treatment of univariate semi-cardinal interpolation for natural cubic splines, the solution is obtained as a Lagrange series with suitable localization and polynomial reproduction properties. It is proved that the extension of the natural boundary conditions to box-spline semi-cardinal interpolation attains half of the approximation order of the cardinal case. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:62 / 77
页数:16
相关论文
共 28 条
[1]  
Bejancu A., 2000, E J APPROX THEORY, V6, P465
[2]  
Bejancu A., 2000, E J APPROX, V6, P447
[3]  
BEJANCU A, 2002, APPROXIMATION THEORY, V10, P27
[4]  
Chui C.K., 1988, CBMS NSF REGIONAL C, V54
[5]   SPACES OF BIVARIATE CUBIC AND QUARTIC SPLINES ON TYPE-1 TRIANGULATIONS [J].
CHUI, CK ;
WANG, RH .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1984, 101 (02) :540-554
[6]  
CHUI CK, 1983, CMS C P AM MATH SOC, V3, P51
[7]  
Conte Samuel Daniel, 2017, Elementary Numerical Analysis, An Algorithmic Approach
[8]  
DAHMEN W, 1983, LINEAR ALGEBRA APPL, V52-3, P217
[9]  
de Boor C., 1976, APPROXIMATION THEORY, VII, P1
[10]  
de Boor C., 1993, APPL MATH SCI SERIES, V98