Increased Chondrogenic Potential of Mesenchymal Cells From Adipose Tissue Versus Bone Marrow-Derived Cells in Osteoarthritic In Vitro Models

被引:31
|
作者
Pagani, Stefania [1 ]
Borsari, Veronica [2 ]
Veronesi, Francesca [1 ]
Ferrari, Andrea [1 ]
Cepollaro, Simona [1 ,3 ]
Torricelli, Paola [1 ]
Filardo, Giuseppe [4 ]
Fini, Milena [1 ]
机构
[1] Rizzoli Orthopaed Inst, Lab Preclin & Surg Studies, Via Barbiano 1-10, I-40136 Bologna, Italy
[2] Rizzoli Orthopaed Inst, Dept RIT Rizzoli, Lab Biocompatibil Technol Innovat & Adv Therapies, Bologna, Italy
[3] Univ Bologna, Dept Med & Surg Sci, Bologna, Italy
[4] Univ Bologna, Rizzoli Orthopaed Inst, Biomech Lab Clin 2, Bologna, Italy
关键词
NECROSIS-FACTOR-ALPHA; SYNOVIAL-FLUID; STEM-CELLS; CARTILAGE REGENERATION; RHEUMATOID-ARTHRITIS; KNEE OSTEOARTHRITIS; CHONDROCYTES; DEGENERATION; DIFFERENTIATION; INFLAMMATION;
D O I
10.1002/jcp.25651
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Primarily, to compare the behavior of human mesenchymal stem cells (MSCs) derived from bone marrow (hBMSCs) and adipose tissue (hADSCs) in an osteoarthritic (OA) microenvironment; secondly, to investigate the reaction of these cell types in two alternative in vitro culture systems, obtained by using TNF alpha and/or IL1 beta as inflammation mediators, or by using synovial fluid harvested by OA patients (OSF) to simulate the complex inflamed knee microenvironment. 3D micromass cultures of hBMSCs or hADSCs were grown in chondrogenic medium (CTR), in the presence of TNF alpha and/or IL1 beta, or synovial fluid from OA patients. After 1 month of culture, the chondrogenic differentiation of micromasses was evaluated by gene expression, matrix composition, and organization. Both hMSCs types formed mature micromasses in CTR, but a better response of hADSCs to the inflammatory environment was documented by micromass area and Bern score evaluations. The addition of OSF elicited a milder reaction than with TNF alpha and/or IL1 beta by both cell types, probably due to the presence of both catabolic and protective factors. In particular, SOX9 and ACAN gene expression and GAG synthesis were more abundant in hADSCs than hBMSCs when cultured in OSF. The expression of MMP1 was increased for both hMSCs in inflammatory conditions, but in particular by hBMSCs. hADSCs showed an increased chondrogenic potential in inflammatory culture systems, suggesting a better response of hADSCs in theOAenvironment, thus underlining the importance of appropriate in vitro models to study MSCs and potential advantages of using these cells for future clinical applications. (C) 2016 Wiley Periodicals, Inc.
引用
收藏
页码:1478 / 1488
页数:11
相关论文
共 50 条
  • [31] Chondrogenic differentiation of bone marrow-derived stem cells cultured in the supernatant of elastic cartilage cells
    Zhang, Xiaodie
    Xue, Ke
    Zhou, Jia
    Xu, Peng
    Huang, Huizhen
    Liu, Kai
    MOLECULAR MEDICINE REPORTS, 2015, 12 (04) : 5355 - 5360
  • [32] Tissue Regeneration Capacity of Extracellular Vesicles Isolated From Bone Marrow-Derived and Adipose-Derived Mesenchymal Stromal/Stem Cells
    Liu, Yuan
    Holmes, Christina
    FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2021, 9
  • [33] Immunomodulatory effects of bone marrow versus adipose tissue-derived mesenchymal stromal cells on NK cells: implications in the transplantation setting
    Blanco, Belen
    del Carmen Herrero-Sanchez, Maria
    Rodriguez-Serrano, Concepcion
    Lourdes Garcia-Martinez, Maria
    Blanco, Juan F.
    Muntion, Sandra
    Garcia-Arranz, Mariano
    Sanchez-Guijo, Fermin
    del Canizo, Consuelo
    EUROPEAN JOURNAL OF HAEMATOLOGY, 2016, 97 (06) : 528 - 537
  • [34] Secretomes from bone marrow-derived mesenchymal stromal cells enhance periodontal tissue regeneration
    Kawai, Takamasa
    Katagiri, Wataru
    Osugi, Masashi
    Sugimura, Yukiko
    Hibi, Hideharu
    Ueda, Minoru
    CYTOTHERAPY, 2015, 17 (04) : 369 - 381
  • [35] Donor age effects on in vitro chondrogenic and osteogenic differentiation performance of equine bone marrow- and adipose tissue-derived mesenchymal stromal cells
    Bagge, Jasmin
    Berg, Lise Charlotte
    Janes, Jennifer
    MacLeod, James N.
    BMC VETERINARY RESEARCH, 2022, 18 (01)
  • [36] Effect of hypoxia on equine mesenchymal stem cells derived from bone marrow and adipose tissue
    Ranera, Beatriz
    Rosa Remacha, Ana
    Alvarez-Arguedas, Samuel
    Romero, Antonio
    Jose Vazquez, Francisco
    Zaragoza, Pilar
    Martin-Burriel, Inmaculada
    Rodellar, Clementina
    BMC VETERINARY RESEARCH, 2012, 8
  • [37] The therapeutic potential of bone marrow-derived mesenchymal stromal cells on hepatocellular carcinoma
    Bayo, Juan
    Marrodan, Mariano
    Aquino, Jorge B.
    Silva, Marcelo
    Garcia, Mariana G.
    Mazzolini, Guillermo
    LIVER INTERNATIONAL, 2014, 34 (03) : 330 - 342
  • [38] Enhanced chondrogenic differentiation of equine bone marrow-derived mesenchymal stem cells in zirconia microwell substrata
    Inui, Tomohiro
    Haneda, Shingo
    Sasaki, Motoki
    Furuoka, Hidefumi
    Ito, Megumi
    Yanagawa, Masashi
    Hiyama, Masato
    Tabata, Yasuhiko
    Sasaki, Naoki
    RESEARCH IN VETERINARY SCIENCE, 2019, 125 : 345 - 350
  • [39] An In Vitro Comparison of the Incorporation, Growth, and Chondrogenic Potential of Human Bone Marrow versus Adipose Tissue Mesenchymal Stem Cells in Clinically Relevant Cell Scaffolds Used for Cartilage Repair
    Kohli, Nupur
    Wright, Karina T.
    Sammons, Rachel L.
    Jeys, Lee
    Snow, Martyn
    Johnson, William E. B.
    CARTILAGE, 2015, 6 (04) : 252 - 263
  • [40] Comparison of the Chondrogenic Potential of Mesenchymal Stem Cells Derived from Bone Marrow and Umbilical Cord Blood Intended for Cartilage Tissue Engineering
    Romain Contentin
    Magali Demoor
    Miranda Concari
    Mélanie Desancé
    Fabrice Audigié
    Thomas Branly
    Philippe Galéra
    Stem Cell Reviews and Reports, 2020, 16 : 126 - 143