Atomic optimization. II. Multidimensional problems and polynomial matrix inequalities

被引:7
作者
Pozdyayev, V. V. [1 ]
机构
[1] Alekseev Nizhni Novgorod State Tech Univ, Arzamas Polytech Inst, Arzamas, Russia
基金
俄罗斯基础研究基金会;
关键词
Optimization - Method of moments;
D O I
10.1134/S0005117914060150
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The paper studies multidimensional optimization problems with a polynomial objective function and constraints in the form of polynomial matrix inequalities. The author suggests a transformation of the solution method based on the theory of moments. This transformation allows to reduce appreciably the computational complexity of the method, still preserving its applicability to optimization problems of the above class.
引用
收藏
页码:1155 / 1171
页数:17
相关论文
共 10 条
[1]   NP-hardness of some linear control design problems [J].
Blondel, V ;
Tsitsiklis, JN .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1997, 35 (06) :2118-2127
[2]  
Galeani S., 2013, DESIGN MARX GENERATO
[3]   Convergent relaxations of polynomial matrix inequalities and static output feedback [J].
Henrion, D ;
Lasserre, JB .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2006, 51 (02) :192-202
[4]  
Henrion D., 2005, POSITIVE POLYNOMIALS, P1
[5]  
Korda M., 2012, INNER APPROXIMATIONS
[6]   Global optimization with polynomials and the problem of moments [J].
Lasserre, JB .
SIAM JOURNAL ON OPTIMIZATION, 2001, 11 (03) :796-817
[7]   A NEW LOOK AT NONNEGATIVITY ON CLOSED SETS AND POLYNOMIAL OPTIMIZATION [J].
Lasserre, Jean B. .
SIAM JOURNAL ON OPTIMIZATION, 2011, 21 (03) :864-885
[8]   A comparison of the Sherali-Adams, Lovasz-Schrijver, and Lasserre relaxations for 0-1 programming [J].
Laurent, M .
MATHEMATICS OF OPERATIONS RESEARCH, 2003, 28 (03) :470-496
[9]  
Leibfritz F., 2004, COMPL IB CONSTRAINT
[10]   Atomic optimization. I. Search Space Transformation and One-dimensional Problems [J].
Pozdyayev, V. V. .
AUTOMATION AND REMOTE CONTROL, 2013, 74 (12) :2069-2092