External beam radiation therapy with kilovoltage x-rays

被引:26
作者
Breitkreutz, Dylan Y. [1 ]
Weil, Michael D. [2 ]
Bazalova-Carter, Magdalena [3 ]
机构
[1] Stanford Univ, Dept Radiat Oncol, Palo Alto, CA 94304 USA
[2] Sirius Med LLC, Half Moon Bay, CA USA
[3] Univ Victoria, Dept Phys & Astron, Victoria, BC, Canada
来源
PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS | 2020年 / 79卷
基金
加拿大自然科学与工程研究理事会;
关键词
Radiotherapy; Kilovoltage x-rays; Microbeam therapy; FLASH; ROTATIONAL RADIOTHERAPY; BREAST-CANCER; BRAIN-TUMOR; SYSTEM;
D O I
10.1016/j.ejmp.2020.11.001
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Kilovoltage (kV) x-rays are most commonly used for diagnostic imaging due to their sensitivity to tissue composition. In radiation therapy (RT), due to their fast attenuation, kV x-rays are typically only used for superficial irradiation of skin cancer and for intra-operative RT (IORT). Recently, however, a number of kV RT techniques have emerged. In this review article, we provide a brief overview of the use of kV x-rays for RT. Various kV x-ray source technologies suitable for RT, such as conventional x-ray tubes as well as novel x-ray sources, are first described. This x-ray source section is then followed by a section on their implementation in terms of clinical, veterinary and preclinical applications. Specifically, IORT, superficial RT and dose enhancement with iodine and gold nanoparticles, as well as microbeam RT and FLASH RT are discussed in this context. Then, a number of kV x-ray RT applications in modeling and proof-of-principle stages, such as breast external beam RT with rotational sources, kilovoltage arc therapy and the BriXS Compton pulsed x-ray sources, are reviewed. Finally, some clinical and economic considerations for the development of kV RT techniques are discussed.
引用
收藏
页码:103 / 112
页数:10
相关论文
共 64 条
[21]   Ultrahigh dose-rate FLASH irradiation increases the differential response between normal and tumor tissue in mice [J].
Favaudon, Vincent ;
Caplier, Laura ;
Monceau, Virginie ;
Pouzoulet, Frederic ;
Sayarath, Mano ;
Fouillade, Charles ;
Poupon, Marie-France ;
Brito, Isabel ;
Hupe, Philippe ;
Bourhis, Jean ;
Hall, Janet ;
Fontaine, Jean-Jacques ;
Vozenin, Marie-Catherine .
SCIENCE TRANSLATIONAL MEDICINE, 2014, 6 (245)
[22]   Pilot study for compact microbeam radiation therapy using a carbon nanotube field emission micro-CT scanner [J].
Hadsell, Mike ;
Cao, Guohua ;
Zhang, Jian ;
Burk, Laurel ;
Schreiber, Torsten ;
Schreiber, Eric ;
Chang, Sha ;
Lu, Jianping ;
Zhou, Otto .
MEDICAL PHYSICS, 2014, 41 (06)
[23]   The use of gold nanoparticles to enhance radiotherapy in mice [J].
Hainfeld, JF ;
Slatkin, DN ;
Smilowitz, HM .
PHYSICS IN MEDICINE AND BIOLOGY, 2004, 49 (18) :N309-N315
[24]   Gold nanoparticles for cancer radiotherapy: a review [J].
Haume K. ;
Rosa S. ;
Grellet S. ;
Śmiałek M.A. ;
Butterworth K.T. ;
Solov’yov A.V. ;
Prise K.M. ;
Golding J. ;
Mason N.J. .
Cancer Nanotechnology, 2016, 7 (1)
[25]   Transmission-type microfocus x-ray tube using carbon nanotube field emitters [J].
Heo, Sung Hwan ;
Ihsan, Aamir ;
Cho, Sung Oh .
APPLIED PHYSICS LETTERS, 2007, 90 (18)
[26]   Laser-electron storage ring [J].
Huang, ZR ;
Ruth, RD .
PHYSICAL REVIEW LETTERS, 1998, 80 (05) :976-979
[27]   CELL-SPECIFIC RADIOSENSITIZATION BY GOLD NANOPARTICLES AT MEGAVOLTAGE RADIATION ENERGIES [J].
Jain, Suneil ;
Coulter, Jonathan A. ;
Hounsell, Alan R. ;
Butterworth, Karl T. ;
McMahon, Stephen J. ;
Hyland, Wendy B. ;
Muir, Mark F. ;
Dickson, Glenn R. ;
Prise, Kevin M. ;
Currell, Fred J. ;
O'Sullivan, Joe M. ;
Hirst, David G. .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2011, 79 (02) :531-539
[28]   Can We Treat Cancer for a Dollar a Day? Guidelines for Low-Income Countries [J].
Kerr, David J. ;
Midgley, Rachel .
NEW ENGLAND JOURNAL OF MEDICINE, 2010, 363 (09) :801-803
[29]  
Khan F.M., 2010, Med Phys, V37, P1374, DOI DOI 10.1118/1.3319185
[30]  
KIM HJ, 2012, J NANOMATER, V2012, P1