Targeted Therapeutic Nanotubes Influence the Viscoelasticity of Cancer Cells to Overcome Drug Resistance

被引:71
作者
Bhirde, Ashwinkumar A. [1 ]
Chikkaveeraiah, Bhaskara V. [1 ]
Srivatsan, Avinash [1 ]
Niu, Gang [1 ]
Jin, Albert J. [2 ]
Kapoor, Ankur [3 ]
Wang, Zhe [1 ]
Patel, Sachin [4 ]
Patel, Vyomesh [4 ]
Gorbach, Alexander M. [2 ]
Leapman, Richard D. [2 ]
Gutkind, J. Silvio [4 ]
Walker, Angela R. Hight [5 ]
Chen, Xiaoyuan [1 ]
机构
[1] Natl Inst Biomed Imaging & Bioengn, Lab Mol Imaging & Nanomed, NIH, Bethesda, MD 20892 USA
[2] Natl Inst Biomed Imaging & Bioengn, Lab Cellular Imaging & Macromol Biophys, NIH, Bethesda, MD 20982 USA
[3] NIH, Dept Radiol & Imaging Sci, Ctr Clin, Bethesda, MD 20892 USA
[4] Natl Inst Dent & Craniofacial Res, Oral & Pharyngeal Canc Branch, NIH, Bethesda, MD 20892 USA
[5] NIST, Gaithersburg, MD 20899 USA
基金
美国国家卫生研究院;
关键词
semiconducting carbon nanotube; hyaluronic acid; doxorubicin; multidrug resistance; viscoelasticity; live cell imaging; quartz-crystal microbalance with dissipation (QCM-D); WALLED CARBON NANOTUBES; OVARIAN-CANCER; IN-VIVO; MULTIDRUG-RESISTANCE; NONCOVALENT FUNCTIONALIZATION; PHOTOTHERMAL THERAPY; CHEMOTHERAPY; DELIVERY; CD44; CHALLENGES;
D O I
10.1021/nn501223q
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Resistance to chemotherapy is the primary cause of treatment failure in over 90% of cancer patients in the clinic. Research in nanotechnology-based therapeutic alternatives has helped provide innovative and promising strategies to overcome multidrug resistance (MDR). By targeting CD44-overexpressing MDR cancer cells, we have developed in a single-step a self-assembled, self-targetable, therapeutic semiconducting single-walled carbon nanotube (sSWCNT) drug delivery system that can deliver chemotherapeutic agents to both drug-sensitive OVCAR8 and resistant OVCAR8/ADR cancer cells. The novel nanoformula with a cholanic acid-derivatized hyaluronic acid (CAHA) biopolymer wrapped around a sSWCNT and loaded with doxorubicin (DOX), CAHA-sSWCNT-DOX, is much more effective in killing drug-resistant cancer cells compared to the free DOX and phospholipid PEG (PL-PEG)-modified sSWCNT formula, PEG-sSWCNT-DOX. The CAHA-sSWCNT-DOX affects the viscoelastic property more than free DOX and PL-PEG-sSWCNT-DOX, which in turn allows more drug molecules to be internalized. Intravenous injection of CAHA-sSWCNT-DOX (12 mg/kg DOX equivalent) followed by 808 nm laser irradiation (1 W/cm(2), 90 s) led to complete tumor eradication in a subcutaneous OVCAR8/ADR drug-resistant xenograft model, while free DOX alone failed to delay tumor growth. Our newly developed CAHA-sSWCNT-DOX nanoformula, which delivers therapeutics and acts as a sensitizer to influence drug uptake and induce apoptosis with minimal resistance factor, provides a novel effective means of counteracting the phenomenon of multidrug resistance.
引用
收藏
页码:4177 / 4189
页数:13
相关论文
共 64 条
[1]   Ovarian cancer: Strategies for overcoming resistance to chemotherapy [J].
Agarwal, R ;
Kaye, SB .
NATURE REVIEWS CANCER, 2003, 3 (07) :502-516
[2]   Ultra-Low Doses of Chirality Sorted (6,5) Carbon Nanotubes for Simultaneous Tumor Imaging and Photothermal Therapy [J].
Antaris, Alexander L. ;
Robinson, Joshua T. ;
Yaghi, Omar K. ;
Hong, Guosong ;
Diao, Shuo ;
Luong, Richard ;
Dai, Hongjie .
ACS NANO, 2013, 7 (04) :3644-3652
[3]   Distribution and clearance of PEG-single-walled carbon nanotube cancer drug delivery vehicles in mice [J].
Bhirde, Ashwin A. ;
Patel, Sachin ;
Sousa, Alioscka A. ;
Patel, Vyomesh ;
Molinolo, Alfredo A. ;
Ji, Youngmi ;
Leapman, Richard D. ;
Gutkind, J. Silvio ;
Rusling, James F. .
NANOMEDICINE, 2010, 5 (10) :1535-1546
[4]   Targeted Killing of Cancer Cells in Vivo and in Vitro with EGF-Directed Carbon Nanotube-Based Drug Delivery [J].
Bhirde, Ashwin A. ;
Patel, Vyomesh ;
Gavard, Julie ;
Zhang, Guofeng ;
Sousa, Alioscka A. ;
Masedunskas, Andrius ;
Leapman, Richard D. ;
Weigert, Roberto ;
Gutkind, J. Silvio ;
Rusling, James F. .
ACS NANO, 2009, 3 (02) :307-316
[5]   Nuclear Mapping of Nanodrug Delivery Systems in Dynamic Cellular Environments [J].
Bhirde, Ashwinkumar A. ;
Kapoor, Ankur ;
Liu, Gang ;
Iglesias-Bartolome, Ramiro ;
Jin, Albert ;
Zhang, Guofeng ;
Xing, Ruijun ;
Lee, Seulki ;
Leapman, Richard D. ;
Gutkind, J. Silvio ;
Chen, Xiaoyuan .
ACS NANO, 2012, 6 (06) :4966-4972
[6]   Opportunities and challenges of carbon-based nanomaterials for cancer therapy [J].
Bianco, Alberto ;
Kostarelos, Kostas ;
Prato, Maurizio .
EXPERT OPINION ON DRUG DELIVERY, 2008, 5 (03) :331-342
[7]   Understanding the causes of multidrug resistance in cancer: a comparison of doxorubicin and sunitinib [J].
Broxterman, Henk J. ;
Gotink, Kristy J. ;
Verheul, Henk M. W. .
DRUG RESISTANCE UPDATES, 2009, 12 (4-5) :114-126
[8]   Identification of CD44 as a Surface Biomarker for Drug Resistance by Surface Proteome Signature Technology [J].
Cain, Jason W. ;
Hauptschein, Robert S. ;
Stewart, Jean K. ;
Bagci, Tugba ;
Sahagian, Gary G. ;
Jay, Daniel G. .
MOLECULAR CANCER RESEARCH, 2011, 9 (05) :637-647
[9]   Eradication of chemotherapy-resistant CD44+human ovarian cancer stem cells in mice by intraperitoneal administration of clostridium perfringens enterotoxin [J].
Casagrande, Francesca ;
Cocco, Emiliano ;
Bellone, Stefania ;
Richter, Christine E. ;
Bellone, Marta ;
Todeschini, Paola ;
Siegel, Eric ;
Varughese, Joyce ;
Arin-Silasi, Dan ;
Azodi, Masoud ;
Rutherford, Thomas J. ;
Pecorelli, Sergio ;
Schwartz, Peter E. ;
Santin, Alessandro D. .
CANCER, 2011, 117 (24) :5519-5528
[10]   Dissipation monitoring for assessing EGF-induced changes of cell adhesion [J].
Chen, Jennifer Y. ;
Shahid, Ammar ;
Garcia, Marcela P. ;
Penn, Lynn S. ;
Xi, Jun .
BIOSENSORS & BIOELECTRONICS, 2012, 38 (01) :375-381