共 53 条
Leaf isoprene emission rate as a function of atmospheric CO2 concentration
被引:124
作者:
Wilkinson, Michael J.
[1
]
Monson, Russell K.
[1
,2
]
Trahan, Nicole
[1
]
Lee, Stanfield
[1
]
Brown, Erin
[1
]
Jackson, Robert B.
[3
]
Polley, H. Wayne
[4
]
Fay, Philip A.
[4
]
Fall, Ray
[2
,5
]
机构:
[1] Univ Colorado, Dept Ecol & Evolutionary Biol, Boulder, CO 80309 USA
[2] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA
[3] Duke Univ, Nicholas Sch Environm, Dept Biol, Durham, NC 27708 USA
[4] USDA, Grassland Soil & Water Res Lab, Temple, TX 76502 USA
[5] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA
基金:
美国国家科学基金会;
关键词:
atmospheric chemistry;
CH4;
climate change;
forests;
global change;
O-3;
VOLATILE ORGANIC-COMPOUNDS;
MONOTERPENE EMISSION;
CARBON-DIOXIDE;
TERRESTRIAL ECOSYSTEMS;
TROPOSPHERIC OZONE;
RATE VARIABILITY;
QUERCUS-ILEX;
ELEVATED CO2;
CLIMATE;
IMPACT;
D O I:
10.1111/j.1365-2486.2008.01803.x
中图分类号:
X176 [生物多样性保护];
学科分类号:
090705 ;
摘要:
There is considerable interest in modeling isoprene emissions from terrestrial vegetation, because these emissions exert a principal control over the oxidative capacity of the troposphere. We used a unique field experiment that employs a continuous gradient in CO2 concentration from 240 to 520 ppmv to demonstrate that isoprene emissions in Eucalyptus globulus were enhanced at the lowest CO2 concentration, which was similar to the estimated CO2 concentrations during the last Glacial Maximum, compared with 380 ppmv, the current CO2 concentration. Leaves of Liquidambar styraciflua did not show an increase in isoprene emission at the lowest CO2 concentration. However, isoprene emission rates from both species were lower for trees grown at 520 ppmv CO2 compared with trees grown at 380 ppmv CO2. When grown in environmentally controlled chambers, trees of Populus deltoides and Populus tremuloides exhibited a 30-40% reduction in isoprene emission rate when grown at 800 ppmv CO2, compared with 400 ppmv CO2. P. tremuloides exhibited a 33% reduction when grown at 1200 ppmv CO2, compared with 600 ppmv CO2. We used current models of leaf isoprene emission to demonstrate that significant errors occur if the CO2 inhibition of isoprene is not taken into account. In order to alleviate these errors, we present a new model of isoprene emission that describes its response to changes in atmospheric CO2 concentration. The model logic is based on assumed competition between cytosolic and chloroplastic processes for pyruvate, one of the principal substrates of isoprene biosynthesis.
引用
收藏
页码:1189 / 1200
页数:12
相关论文