Prognostics of Transformer Paper Insulation Using Statistical Particle Filtering of On-Line Data

被引:13
作者
Catterson, V. M. [1 ]
Melone, J. [2 ]
Garcia, M. Segovia [2 ]
机构
[1] Univ Strathclyde, Inst Energy & Environm, Glasgow G1 1XQ, Lanark, Scotland
[2] Univ Strathclyde, Power Networks Demonstrat Ctr, Glasgow G1 1XQ, Lanark, Scotland
关键词
transformer; prognostics; paper insulation; life estimation; condition monitoring;
D O I
10.1109/MEI.2016.7361101
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The adoption of prognostics for critical assets has the potential to advance asset management in the power industry significantly. Whereas diagnostic techniques can identify the presence of incipient faults, prognostics aims to predict the future state of a given asset [1], [2]. Prognostics can therefore be used to estimate the remaining useful life (RUL) of the asset, and help plan maintenance while minimizing the risk of failure in service. Prognostics requires a good model of the process of deterioration, from inception through to failure [1]-[3]. Deterioration may be due to aging, as in the case of paper insulation, or it may be due to a fault. Regardless of the cause of deterioration, prognostics is useful only if the deterioration is slow enough that maintenance (repair or replacement) can be scheduled during the predicted RUL. Thus, prognostics is not superior to diagnostics if the deterioration is so rapid that failure cannot be prevented. © 2006 IEEE.
引用
收藏
页码:28 / 33
页数:6
相关论文
共 20 条
  • [1] Aizpurua J.I., 2015, P ANN C PHM SOC COR, VVolume 7
  • [2] [Anonymous], 2011, C57912011 IEEE
  • [3] [Anonymous], 2007, D10110 CIGRE TASK FO
  • [4] A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking
    Arulampalam, MS
    Maskell, S
    Gordon, N
    Clapp, T
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2002, 50 (02) : 174 - 188
  • [5] Aziz NH, 2014, C ELECT INSUL DIEL P, P373, DOI 10.1109/CEIDP.2014.6995906
  • [6] Booth C. D., 2014, 12 IET INT C DEV POW
  • [7] Catterson VM, 2014, C ELECT INSUL DIEL P, P413, DOI 10.1109/CEIDP.2014.6995874
  • [8] Daigle M, 2012, AEROSP CONF PROC
  • [9] Goebel K, 2008, 62 M SOC MACH FAIL P, P119
  • [10] A review on machinery diagnostics and prognostics implementing condition-based maintenance
    Jardine, Andrew K. S.
    Lin, Daming
    Banjevic, Dragan
    [J]. MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2006, 20 (07) : 1483 - 1510