HARDY SPACES ASSOCIATED TO THE DISCRETE LAPLACIANS ON GRAPHS AND BOUNDEDNESS OF SINGULAR INTEGRALS

被引:13
作者
The Anh Bui [1 ,2 ]
Duong, Xuan Thinh [1 ]
机构
[1] Macquarie Univ, Dept Math, N Ryde, NSW 2109, Australia
[2] Univ Pedag, Dept Math, Ho Chi Minh City, Vietnam
关键词
Graphs; discrete Laplacian; Hardy spaces; spectral multipliers; square functions; Riesz transforms; RIESZ TRANSFORMS; SPECTRAL MULTIPLIERS; RANDOM-WALKS; INTERPOLATION; OPERATORS; DUALITY;
D O I
10.1090/S0002-9947-2014-05915-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Gamma be a graph with a weight sigma. Let d and mu be the distance and the measure associated with s such that (Gamma, d, mu) is a doubling space. Let p be the natural reversible Markov kernel associated with s and mu and P be the associated operator defined by Pf(x) = Sigma(y) p(x, y) f(y). Denote by L = I - P the discrete Laplacian on Gamma. In this paper we develop the theory of Hardy spaces associated to the discrete Laplacian H-L(p) for 0 < p <= 1. We obtain square function characterization and atomic decompositions for functions in the Hardy spaces H-L(p), then establish the dual spaces of the Hardy spaces H-L(p), 0 < p <= 1. Without the assumption of Poincare inequality, we show the boundedness of certain singular integrals on Gamma such as square functions, spectral multipliers and Riesz transforms on the Hardy spaces H-L(p), 0 < p <= 1.
引用
收藏
页码:3451 / 3485
页数:35
相关论文
共 31 条
[1]   Spectral multipliers on discrete groups [J].
Alexopoulos, GK .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2001, 33 :417-424
[2]  
Auscher P., BOUNDEDNESS BA UNPUB
[3]   Hardy spaces of differential forms on Riemannian manifolds [J].
Auscher, Pascal ;
McIntosh, Alan ;
Russ, Emmanuel .
JOURNAL OF GEOMETRIC ANALYSIS, 2008, 18 (01) :192-248
[4]   INTERPOLATION OF SOBOLEV SPACES, LITTLEWOOD-PALEY INEQUALITIES AND RIESZ TRANSFORMS ON GRAPHS [J].
Badr, Nadine ;
Russ, Emmanuel .
PUBLICACIONS MATEMATIQUES, 2009, 53 (02) :273-328
[5]   Harmonic analysis on metrized graphs [J].
Baker, Matt ;
Rumely, Robert .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2007, 59 (02) :225-275
[6]  
Blunck Sonke, 2000, C MATH, V86, P189
[7]  
BUI TX, UNPUB
[8]  
Christ Michael, 1995, P C HON JP KAH ORS 1, P141
[9]   SOME NEW FUNCTION-SPACES AND THEIR APPLICATIONS TO HARMONIC-ANALYSIS [J].
COIFMAN, RR ;
MEYER, Y ;
STEIN, EM .
JOURNAL OF FUNCTIONAL ANALYSIS, 1985, 62 (02) :304-335
[10]   EXTENSIONS OF HARDY SPACES AND THEIR USE IN ANALYSIS [J].
COIFMAN, RR ;
WEISS, G .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1977, 83 (04) :569-645