On Riemann-Liouville and Caputo Impulsive Fractional Calculus

被引:0
作者
De la Sen, M. [1 ]
机构
[1] Inst Res & Dev Proc, Campus Leioa,Aptdo 644, Bilbao, Spain
来源
WORLD CONGRESS ON ENGINEERING, WCE 2011, VOL I | 2011年
关键词
Rimann-Liouville fractional calculus; Caputo fractional derivative; Dirac delta; Distributional derivatives; High- order distributional derivatives; SYSTEMS;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper gives formulas for Riemann-Liouville impulsive fractional integral calculus and for Riemann- Lionville and Caputo impulsive fractional derivatives.
引用
收藏
页码:231 / 236
页数:6
相关论文
共 9 条
[1]  
[Anonymous], 1963, LINEAR SYSTEM THEORY
[2]  
Das S., 2008, Functional Fractional Calculus for System Identification and Controls
[3]   ON SOME STRUCTURES OF STABILIZING CONTROL LAWS FOR LINEAR AND TIME-INVARIANT SYSTEMS WITH BOUNDED POINT DELAYS AND UNMEASURABLE STATES [J].
DELASEN, M .
INTERNATIONAL JOURNAL OF CONTROL, 1994, 59 (02) :529-541
[6]  
Luchko Y., 1999, Acta Math. Vietnam., V24, P207
[7]   THE EXACT SOLUTION OF CERTAIN DIFFERENTIAL-EQUATIONS OF FRACTIONAL ORDER BY USING OPERATIONAL CALCULUS [J].
LUCHKO, YF ;
SRIVASTAVA, HM .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1995, 29 (08) :73-85
[8]   Composite semiactive control of a class of seismically excited structures [J].
Luo, N ;
Rodellar, J ;
Vehí, J ;
De la Sen, M .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2001, 338 (2-3) :225-240
[9]  
Oldham K.B., 1974, The fractional calculus theory and applications of differentiation and integration to arbitrary order, DOI DOI 10.1016/S0076-5392(09)60219-8