Development and Validation of a Novel Radiomics-Based Nomogram With Machine Learning to Preoperatively Predict Histologic Grade in Pancreatic Neuroendocrine Tumors

被引:8
作者
Wang, Xing [1 ]
Qiu, Jia-Jun [2 ]
Tan, Chun-Lu [1 ]
Chen, Yong-Hua [1 ]
Tan, Qing-Quan [1 ]
Ren, Shu-Jie [1 ]
Yang, Fan [3 ]
Yao, Wen-Qing [4 ]
Cao, Dan [5 ]
Ke, Neng-Wen [1 ]
Liu, Xu-Bao [1 ]
机构
[1] Sichuan Univ, West China Hosp, Dept Pancreat Surg, Chengdu, Peoples R China
[2] Sichuan Univ, West China Hosp, Dept West China Biomed Big Data Ctr, Chengdu, Peoples R China
[3] Sichuan Univ, West China Hosp, Dept Radiol, Chengdu, Peoples R China
[4] Sichuan Univ, West China Hosp, Dept Pathol, Chengdu, Peoples R China
[5] Sichuan Univ, West China Hosp, Dept Oncol, Chengdu, Peoples R China
来源
FRONTIERS IN ONCOLOGY | 2022年 / 12卷
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
pancreas; pancreatic neuroendocrine tumor; tumor grade; radiomics; CT; NEOPLASMS;
D O I
10.3389/fonc.2022.843376
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
BackgroudTumor grade is the determinant of the biological aggressiveness of pancreatic neuroendocrine tumors (PNETs) and the best current tool to help establish individualized therapeutic strategies. A noninvasive way to accurately predict the histology grade of PNETs preoperatively is urgently needed and extremely limited. MethodsThe models training and the construction of the radiomic signature were carried out separately in three-phase (plain, arterial, and venous) CT. Mann-Whitney U test and least absolute shrinkage and selection operator (LASSO) were applied for feature preselection and radiomic signature construction. SVM-linear models were trained by incorporating the radiomic signature with clinical characteristics. An optimal model was then chosen to build a nomogram. ResultsA total of 139 PNETs (including 83 in the training set and 56 in the independent validation set) were included in the present study. We build a model based on an eight-feature radiomic signature (group 1) to stratify PNET patients into grades 1 and 2/3 groups with an AUC of 0.911 (95% confidence intervals (CI), 0.908-0.914) and 0.837 (95% CI, 0.827-0.847) in the training and validation cohorts, respectively. The nomogram combining the radiomic signature of plain-phase CT with T stage and dilated main pancreatic duct (MPD)/bile duct (BD) (group 2) showed the best performance (training set: AUC = 0.919, 95% CI = 0.916-0.922; validation set: AUC = 0.875, 95% CI = 0.867-0.883). ConclusionsOur developed nomogram that integrates radiomic signature with clinical characteristics could be useful in predicting grades 1 and 2/3 PNETs preoperatively with powerful capability.
引用
收藏
页数:10
相关论文
共 36 条
[1]   Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach [J].
Aerts, Hugo J. W. L. ;
Velazquez, Emmanuel Rios ;
Leijenaar, Ralph T. H. ;
Parmar, Chintan ;
Grossmann, Patrick ;
Cavalho, Sara ;
Bussink, Johan ;
Monshouwer, Rene ;
Haibe-Kains, Benjamin ;
Rietveld, Derek ;
Hoebers, Frank ;
Rietbergen, Michelle M. ;
Leemans, C. Rene ;
Dekker, Andre ;
Quackenbush, John ;
Gillies, Robert J. ;
Lambin, Philippe .
NATURE COMMUNICATIONS, 2014, 5
[2]   Measures of angular spread and entropy for the detection of architectural distortion in prior mammograms [J].
Banik, Shantanu ;
Rangayyan, Rangaraj M. ;
Desautels, J. E. Leo .
INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2013, 8 (01) :121-134
[3]   Artificial intelligence in cancer imaging: Clinical challenges and applications [J].
Bi, Wenya Linda ;
Hosny, Ahmed ;
Schabath, Matthew B. ;
Giger, Maryellen L. ;
Birkbak, Nicolai J. ;
Mehrtash, Alireza ;
Allison, Tavis ;
Arnaout, Omar ;
Abbosh, Christopher ;
Dunn, Ian F. ;
Mak, Raymond H. ;
Tamimi, Rulla M. ;
Tempany, Clare M. ;
Swanton, Charles ;
Hoffmann, Udo ;
Schwartz, Lawrence H. ;
Gillies, Robert J. ;
Huang, Raymond Y. ;
Aerts, Hugo J. W. L. .
CA-A CANCER JOURNAL FOR CLINICIANS, 2019, 69 (02) :127-157
[4]  
Bosman FT., 2010, WHO CLASSIFCATION TU
[5]   Gastroenteropancreatic Neuroendocrine Tumors [J].
Cives, Mauro ;
Strosberg, Jonathan R. .
CA-A CANCER JOURNAL FOR CLINICIANS, 2018, 68 (06) :471-487
[6]   Comparison between EUS-guided fine-needle aspiration cytology and EUS-guided fine-needle biopsy histology for the evaluation of pancreatic neuroendocrine tumors [J].
Crino, Stefano Francesco ;
Ammendola, Serena ;
Meneghetti, Anna ;
Bernardoni, Laura ;
Bellocchi, Maria Cristina Conti ;
Gabbrielli, Armando ;
Landoni, Luca ;
Paiella, Salvatore ;
Pin, Federico ;
Parisi, Alice ;
Mastrosimini, Maria Gaia ;
Amodio, Antonio ;
Frulloni, Luca ;
Facciorusso, Antonio ;
Larghi, Alberto ;
Manfrin, Erminia .
PANCREATOLOGY, 2021, 21 (02) :443-450
[7]   Trends in the Incidence, Prevalence, and Survival Outcomes in Patients With Neuroendocrine Tumors in the United States [J].
Dasari, Arvind ;
Shen, Chan ;
Halperin, Daniel ;
Zhao, Bo ;
Zhou, Shouhao ;
Xu, Ying ;
Shih, Tina ;
Yao, James C. .
JAMA ONCOLOGY, 2017, 3 (10) :1335-1342
[8]   CT-based radiomic model predicts high grade of clear cell renal cell carcinoma [J].
Ding, Jiule ;
Xing, Zhaoyu ;
Jiang, Zhenxing ;
Chen, Jie ;
Pan, Liang ;
Qiu, Jianguo ;
Xing, Wei .
EUROPEAN JOURNAL OF RADIOLOGY, 2018, 103 :51-56
[9]   A nation-wide retrospective epidemiological study of gastroenteropancreatic neuroendocrine neoplasms in china [J].
Fan, Jin-Hu ;
Zhang, Yu-Qing ;
Shi, Su-Sheng ;
Chen, Yuan-Jia ;
Yuan, Xing-Hua ;
Jiang, Li-Ming ;
Wang, Shao-Ming ;
Ma, Li ;
He, Yu-Tong ;
Feng, Chang-Yan ;
Sun, Xi-Bin ;
Liu, Qing ;
Deloso, Katrina ;
Chi, Yihebali ;
Qiao, You-Lin .
ONCOTARGET, 2017, 8 (42) :71699-71708
[10]   Clinical relevance of performing endoscopic ultrasound-guided fine-needle biopsy for pancreatic neuroendocrine tumors less than 2 cm [J].
Heidsma, Charlotte M. ;
Tsilimigras, Diamantis I. ;
Rocha, Flavio ;
Abbott, Daniel E. ;
Fields, Ryan ;
Smith, Paula M. ;
Poultsides, George A. ;
Cho, Cliff ;
van Eijck, Casper ;
van Dijkum, Elisabeth Nieveen ;
Maithel, Shishir K. ;
Pawlik, Timothy M. .
JOURNAL OF SURGICAL ONCOLOGY, 2020, 122 (07) :1393-1400