Effects of surface roughness on mixed convection nanoliquid flow over slender cylinder with liquid hydrogen diffusion

被引:49
作者
Patil, P. M. [1 ]
Shashikant, A. [1 ]
Hiremath, P. S. [2 ]
机构
[1] Karnatak Univ, Dept Math, Dharwad 580003, Karnataka, India
[2] KLE Technol Univ, Dept Comp Sci MCA, BVB Campus, Hubli 580031, India
关键词
Liquid hydrogen; Nanoliquid; Quasilinearization; Slender cylinder; Surface roughness; BOUNDARY-LAYER-FLOW; FORCED-CONVECTION; HEAT-TRANSFER; VERTICAL CYLINDER; MASS-TRANSFER; CHEMICAL-REACTION; CAVITY; FLUID;
D O I
10.1016/j.ijhydene.2019.02.240
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The influence of surface roughness on boundary layer flow characteristics over moving surfaces is of considerable research interest in recent times. In the present study, the effects of surface roughness on flow over moving slender cylinder are analyzed in presence of mixed convection nanoliquid boundary layer flow. The problem is modelled in terms of highly nonlinear dimensional partial differential equations, which are written in non dimensional form with the help of non-similar transformations. The resulting equations are reduced to linear partial differential equations by utilizing Quasilinearization technique, which are discretized using implicit finite difference scheme. The results obtained during the numerical simulation are then depicted through graphs in terms of various profiles and gradients and are analyzed with proper physical explanations. The roughness of slender cylinder surface is represented in a deterministic model as a sine wave form and yields sinusoidal variations in the values of skin-friction coefficient, wall heat and mass transfer rates. It is observed that the surface roughness effects are more prominent away from the orifice. The local frequency of gradients increases (i.e. wavelength decreases) with the increase in the frequency of surface roughness (n). The addition of nanoparticles into the ordinary fluid enhances the skin-friction coefficient and wall mass transfer rate. However, due to its effects, significant reduction is observed in the wall heat transfer rate. The phase difference of gradient oscillations arising in presence of nanoparticles is suppressed further away from the origin due to surface roughness. Interestingly, the amplitude of gradient oscillations remain higher in case of nanoliquid in comparison with that in case of ordinary fluid. Furthermore, the magnitude of wall mass transfer rate of liquid hydrogen is higher than that of nanoparticle wall mass transfer rate, which signifies the higher diffusivity of nanoparticles. The results of present study are of practical relevance to industrial applications such as polymer fibre coating and coating of wires. (C) 2019 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:11121 / 11133
页数:13
相关论文
共 41 条
[1]   Entropy generation due to mixed convection over vertical permeable cylinders using nanofluids [J].
Ahmed, Sameh E. ;
Raizah, Z. A. S. ;
Aly, Abdelraheem M. .
JOURNAL OF KING SAUD UNIVERSITY SCIENCE, 2019, 31 (03) :352-361
[2]  
[Anonymous], 2011, J MICROSCALE NANOSCA
[3]   Improved heat transfer predictions on rough surfaces [J].
Aupoix, B. .
INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2015, 56 :160-171
[4]   Natural convection investigation in square cavity filled with nanofluid using dispersion model [J].
Boualit, Abdelhamid ;
Zeraibi, Noureddine ;
Chergui, Toufik ;
Lebbi, Mohamed ;
Boutina, Lyes ;
Laouar, Salima .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (13) :8611-8623
[5]   COMBINED FREE AND FORCED-CONVECTION ON VERTICAL SLENDER CYLINDERS [J].
BUI, MN ;
CEBECI, T .
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 1985, 107 (02) :476-478
[6]   Convective transport in nanofluids [J].
Buongiorno, J .
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2006, 128 (03) :240-250
[7]   DETERMINISTIC MODELING AND NUMERICAL-SIMULATION OF LUBRICATION BETWEEN ROUGH SURFACES - A REVIEW OF RECENT DEVELOPMENTS [J].
CHANG, L .
WEAR, 1995, 184 (02) :155-160
[8]   BUOYANCY EFFECTS ON FORCED-CONVECTION ALONG A VERTICAL CYLINDER [J].
CHEN, TS ;
MUCOGLU, A .
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 1975, 97 (02) :198-203
[9]   MASS-TRANSFER AT ROUGH SURFACES [J].
DAWSON, DA ;
TRASS, O .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 1972, 15 (07) :1317-&
[10]   A numerical study of the impact of surface roughness on heat and fluid flow past a cylindrical particle [J].
Dierich, F. ;
Nikrityuk, P. A. .
INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2013, 65 :92-103