Ground state solutions andmultiple solutions for a p(x)-Laplacian equation in RN with periodic data

被引:2
作者
Ji, Chao [1 ]
Liao, Jie [1 ]
Zhang, Binlin [2 ]
机构
[1] East China Univ Sci & Technol, Dept Math, Shanghai, Peoples R China
[2] Heilongjiang Inst Technol, Dept Math, Harbin, Peoples R China
基金
中国博士后科学基金;
关键词
p(x)-Laplacian equation; variable exponent Sobolev spaces; ground state solutions; multiplicity of solutions; Nehari manifold; SPACES; THEOREMS; LEBESGUE;
D O I
10.1080/17476933.2016.1245724
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work, we consider the following p(x)-Laplacian equation in R-N {- div(|Delta u|(p(x))-2(del u)) + V(x)|u| (p(x)-2)u = f (x, u), in R-N u is an element of W-1,W- p(x)(R-N), where f, V and p( x) are periodic in x(1), x(2),..., x(N). Under some appropriate assumptions, we prove the existence of the ground state solutions via the generalized Nehari method due to Szulkin and Weth. Moreover, if f is odd in u, infinitely many pairs of geometrically distinct solutions are given. To the best of our knowledge, our results are new even in the constant exponent case.
引用
收藏
页码:825 / 837
页数:13
相关论文
共 20 条
[1]  
[Anonymous], 1996, VARIATIONAL METHODS, DOI DOI 10.1007/978-3-662-03212-1
[2]  
[Anonymous], 1997, Minimax theorems
[3]  
Antontsev S, 2006, HBK DIFF EQUAT STATI, V3, P1, DOI 10.1016/S1874-5733(06)80005-7
[4]   Existence of Stationary States for A-Dirac Equations with Variable Growth [J].
Bisci, Giovanni Molica ;
Radulescu, Vicentiu D. ;
Zhang, Binlin .
ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2015, 25 (02) :385-402
[5]  
Diening L., 2004, FSDONA04 Proc, V66, P38
[6]   Lebesgue and Sobolev Spaces with Variable Exponents [J].
Diening, Lars ;
Harjulehto, Petteri ;
Hasto, Peter ;
Ruzicka, Michael .
LEBESGUE AND SOBOLEV SPACES WITH VARIABLE EXPONENTS, 2011, 2017 :1-+
[7]   p(x)-Laplacian equations in RN with periodic data and nonperiodic perturbations [J].
Fan, Xianling .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 341 (01) :103-119
[8]   Sobolev embedding theorems for spaces Wk,p(x)(Ω) [J].
Fan, XL ;
Shen, JS ;
Zhao, D .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 262 (02) :749-760
[9]   On the spaces Lp(x)(Ω) and Wm, p(x)(Ω) [J].
Fan, XL ;
Zhao, D .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 263 (02) :424-446
[10]   Compact imbedding theorems with symmetry of Strauss-Lions type for the space W1,p(x)(Ω) [J].
Fan, XL ;
Zhao, YZ ;
Zhao, D .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 255 (01) :333-348