Global exponential stability of positive periodic solutions for a delayed Nicholson's blowflies model

被引:63
作者
Liu, Bingwen [1 ]
机构
[1] Jiaxing Univ, Coll Math Phys & Informat Engn, Jiaxing 314001, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Global exponential stability; Time-varying delay; Positive periodic solution; Nicholson's blowflies model; ATTRACTIVITY; POPULATION; PERMANENCE; EXISTENCE; SYSTEM;
D O I
10.1016/j.jmaa.2013.10.049
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with a non-autonomous delayed Nicholson's blowflies model. Under proper conditions, we employ :a novel argument to establish a criterion on the global exponential stability of positive periodic solutions. This answers an open problem proposed by Berezansky et al. (2010) [2]. We also provide numerical simulations to support the theoretical result. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:212 / 221
页数:10
相关论文
共 33 条
[1]   Almost periodic solutions for an impulsive delay Nicholson's blowflies model [J].
Alzabut, Jehad O. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 234 (01) :233-239
[2]  
[Anonymous], 1994, Differ. Equations Dyn. Syst., DOI [10.1007/BF02662882, DOI 10.1007/BF02662882]
[3]  
[Anonymous], 1992, JAPAN J IND APPL MAT
[4]  
[Anonymous], 2011, INTRO DELAY DIFFEREN
[5]   Nicholson's blowflies differential equations revisited: Main results and open problems [J].
Berezansky, L. ;
Braverman, E. ;
Idels, L. .
APPLIED MATHEMATICAL MODELLING, 2010, 34 (06) :1405-1417
[6]   Positive almost periodic solution for a class of Nicholson's blowflies model with multiple time-varying delays [J].
Chen, Wei ;
Liu, Bingwen .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (08) :2090-2097
[7]  
Chen Y., 2003, Can. Appl. Math. Q., V11, P23, DOI DOI 10.1016/J.CAM.2010.10.007.MR2131833
[8]   Interaction of maturation delay and nonlinear birth in population and epidemic models [J].
Cooke, K ;
van den Driessche, P ;
Zou, X .
JOURNAL OF MATHEMATICAL BIOLOGY, 1999, 39 (04) :332-352
[9]   A new approach for positive almost periodic solutions to a class of Nicholson's blowflies model [J].
Ding, Hui-Sheng ;
Nieto, Juan J. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2013, 253 :249-254
[10]   Global attractivity in a population model with nonlinear death rate and distributed delays [J].
El-Morshedy, Hassan A. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 410 (02) :642-658