The order of large random permutations with cycle weights

被引:2
作者
Storm, Julia [1 ]
Zeindler, Dirk [2 ]
机构
[1] Univ Zurich, CH-8006 Zurich, Switzerland
[2] Univ Lancaster, Lancaster LA1 4YW, England
来源
ELECTRONIC JOURNAL OF PROBABILITY | 2015年 / 20卷
关键词
random permutation; order of a permutation; generalised Ewens measure; Erdos-Turan law; large deviations; local limit theorem; Riemann hypothesis; LIMIT-THEOREMS; PROBABILITY;
D O I
10.1214/EJP.v20-4331
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The order O-n (sigma) of a permutation sigma of n objects is the smallest integer k >= 1 such that the k-th iterate of sigma gives the identity. A remarkable result about the order of a uniformly chosen permutation is due to Erdos and Turan who proved in 1965 that log O-n satisfies a central limit theorem. We extend this result to the so-called generalized Ewens measure in a previous paper. In this paper, we establish a local limit theorem as well as, under some extra moment condition, a precise large deviations estimate. These properties are new even for the uniform measure. Furthermore, we provide precise large deviations estimates for random permutations with polynomial cycle weights.
引用
收藏
页码:1 / 34
页数:34
相关论文
共 25 条
[1]  
Apostol TM., 1976, Introduction to Analytic Number Theory. Undergraduate Texts in Mathematics, DOI DOI 10.1007/978-1-4757-5579-4
[2]   LIMIT-THEOREMS FOR COMBINATORIAL STRUCTURES VIA DISCRETE PROCESS APPROXIMATIONS [J].
ARRATIA, R ;
TAVARE, S .
RANDOM STRUCTURES & ALGORITHMS, 1992, 3 (03) :321-345
[3]   RANDOM PERMUTATIONS WITH CYCLE WEIGHTS [J].
Betz, Volker ;
Ueltschi, Daniel ;
Velenik, Yvan .
ANNALS OF APPLIED PROBABILITY, 2011, 21 (01) :312-331
[4]   RANDOM PERMUTATIONS AND BROWNIAN-MOTION [J].
DELAURENTIS, JM ;
PITTEL, BG .
PACIFIC JOURNAL OF MATHEMATICS, 1985, 119 (02) :287-301
[5]   Mod-φ Convergence [J].
Delbaen, Freddy ;
Kowalski, Emmanuel ;
Nikeghbali, Ashkan .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (11) :3445-3485
[6]   Cycle Structure of Random Permutations With Cycle Weights [J].
Ercolani, Nicholas M. ;
Ueltschi, Daniel .
RANDOM STRUCTURES & ALGORITHMS, 2014, 44 (01) :109-133
[7]  
Erdos P., 1965, Gebiete, V4, P175
[8]  
Feray V., 2013, MOD PHI CONVERGENCE
[9]   MELLIN TRANSFORMS AND ASYMPTOTICS - HARMONIC SUMS [J].
FLAJOLET, P ;
GOURDON, X ;
DUMAS, P .
THEORETICAL COMPUTER SCIENCE, 1995, 144 (1-2) :3-58
[10]  
Flajolet P., 2009, ANAL COMBINATORICS