Evaluation of data compression techniques for the inference of stellar atmospheric parameters from high-resolution spectra

被引:4
|
作者
Gonzalez-Marcos, A. [1 ]
Sarro, L. M. [2 ]
Ordieres-Mere, J. [3 ,5 ]
Bello-Garcia, A. [4 ]
机构
[1] Univ La Rioja, Dept Mech Engn, C San Jose de Calasanz 31, E-26004 Logrono, Spain
[2] UNED, ETSI Informat, Dept Inteligencia Artificial, C Juan del Rosal 16, E-28040 Madrid, Spain
[3] Univ Politecn Madrid, ETSII, Jose Gutierrez Abascal 2, E-28016 Madrid, Spain
[4] Univ Oviedo, Dept Construct & Ind Mfg, E-33203 Gijon, Spain
[5] PMQ Res Team, Madrid, Spain
关键词
methods: data analysis; methods: statistical; stars: fundamental parameters; NONLINEAR DIMENSIONALITY REDUCTION; INDEPENDENT COMPONENT ANALYSIS; BLIND SEPARATION; CLASSIFICATION; METALLICITY; ALGORITHMS; ABUNDANCES; STARS;
D O I
10.1093/mnras/stw3031
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The determination of stellar atmospheric parameters from spectra suffers the so-called curseof- dimensionality problem, which is related to the higher number of input variables (flux values) compared to the number of spectra available to fit a regression model (this collection of examples is known as the training set). This work evaluates the utility of several techniques for alleviating this problem in regression tasks where the objective is to estimate the effective temperature (T-eff), the surface gravity (log g), the metallicity ([M/H]) and/or the alpha-to-iron ratio ([alpha/Fe]). The goal of the techniques analysed here is to achieve data compression by representing the spectra with a number of variables much lower than the initially available set of fluxes. The experiments were performed with high-resolution spectra of stars in the 4000-8000 K range for different signal-to-noise ratio (SNR) regimes. We conclude that independent component analysis (ICA) performs better than the rest of techniques evaluated for all SNR regimes. We also assess the necessity to adapt the SNR of the spectra used to fit a regression model (training set) to the SNR of the spectra for which the atmospheric parameters are needed (evaluation set). Within the conditions of our experiments, we conclude that at most only two such regression models are needed (in the case of regression models for effective temperatures, those corresponding to SNR = 50 and 10) to cover the entire SNR range. Finally, we also compare the prediction accuracy of effective temperature regression models for increasing values of the training grid density and the same compression techniques.
引用
收藏
页码:4556 / 4571
页数:16
相关论文
共 50 条
  • [41] The Kepler Follow-up Observation Program. II. Stellar Parameters from Medium- and High-resolution Spectroscopy
    Furlan, E.
    Ciardi, D. R.
    Cochran, W. D.
    Everett, M. E.
    Latham, D. W.
    Marcy, G. W.
    Buchhave, L. A.
    Endl, M.
    Isaacson, H.
    Petigura, E. A.
    Gautier, T. N., III
    Huber, D.
    Bieryla, A.
    Borucki, W. J.
    Brugamyer, E.
    Caldwell, C.
    Cochran, A.
    Howard, A. W.
    Howell, S. B.
    Johnson, M. C.
    MacQueen, P. J.
    Quinn, S. N.
    Robertson, P.
    Mathur, S.
    Batalha, N. M.
    ASTROPHYSICAL JOURNAL, 2018, 861 (02)
  • [42] On-line determination of stellar atmospheric parameters Teff, log g, [Fe/H] from ELODIE echelle spectra -: I.: The method
    Katz, D
    Soubiran, C
    Cayrel, R
    Adda, M
    Cautain, R
    ASTRONOMY & ASTROPHYSICS, 1998, 338 (01): : 151 - 160
  • [43] High-resolution temperature profiles retrieved from bichromatic stellar scintillation measurements by GOMOS/Envisat
    Sofieva, Viktoria F.
    Dalaudier, Francis
    Hauchecorne, Alain
    Kan, Valery
    ATMOSPHERIC MEASUREMENT TECHNIQUES, 2019, 12 (01) : 585 - 598
  • [44] Evaluation of ALOS PALSAR Data for High-Resolution Mapping of Vegetated Wetlands in Alaska
    Clewley, Daniel
    Whitcomb, Jane
    Moghaddam, Mahta
    McDonald, Kyle
    Chapman, Bruce
    Bunting, Peter
    REMOTE SENSING, 2015, 7 (06) : 7272 - 7297
  • [45] Stellar parameters from very low resolution spectra and medium band filters -: Teff, log g and [M/H] using neural networks
    Bailer-Jones, CAL
    ASTRONOMY & ASTROPHYSICS, 2000, 357 (01) : 197 - 205
  • [46] Deriving the Extinction to Young Stellar Objects using [Fe II] Near-infrared Emission Lines: Prescriptions from GIANO High-resolution Spectra
    Pecchioli, T.
    Sanna, N.
    Massi, F.
    Oliva, E.
    PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC, 2016, 128 (965)
  • [47] Simplified models of stellar wind anatomy for interpreting high-resolution data Analytical approach to embedded spiral geometries
    Homan, Ward
    Decin, Leen
    de Koter, Alex
    van Marle, Allard Jan
    Lombaert, Robin
    Vlemmings, Wouter
    ASTRONOMY & ASTROPHYSICS, 2015, 579
  • [48] Exploring the stellar properties of M dwarfs with high-resolution spectroscopy from the optical to the near-infrared
    Rajpurohit, A. S.
    Allard, F.
    Rajpurohit, S.
    Sharma, R.
    Teixeira, G. D. C.
    Mousis, O.
    Kamlesh, R.
    ASTRONOMY & ASTROPHYSICS, 2018, 620
  • [49] Fast High-Resolution Mass Spectrometry and Chemometrics for Evaluation of Sensory Parameters of Commercial Coffee Blends
    Kelis Cardoso, Victor Gustavo
    Sabin, Guilherme Post
    Hantao, Leandro Wang
    BRAZILIAN JOURNAL OF ANALYTICAL CHEMISTRY, 2021, 8 (32): : 91 - 106
  • [50] BUILDING DETECTION AND HEIGHT ESTIMATION FROM HIGH-RESOLUTION INSAR AND OPTICAL DATA
    Wegner, Jan Dirk
    Ziehn, Jens R.
    Soergel, Uwe
    2010 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2010, : 1928 - 1931