Evaluation of data compression techniques for the inference of stellar atmospheric parameters from high-resolution spectra

被引:4
|
作者
Gonzalez-Marcos, A. [1 ]
Sarro, L. M. [2 ]
Ordieres-Mere, J. [3 ,5 ]
Bello-Garcia, A. [4 ]
机构
[1] Univ La Rioja, Dept Mech Engn, C San Jose de Calasanz 31, E-26004 Logrono, Spain
[2] UNED, ETSI Informat, Dept Inteligencia Artificial, C Juan del Rosal 16, E-28040 Madrid, Spain
[3] Univ Politecn Madrid, ETSII, Jose Gutierrez Abascal 2, E-28016 Madrid, Spain
[4] Univ Oviedo, Dept Construct & Ind Mfg, E-33203 Gijon, Spain
[5] PMQ Res Team, Madrid, Spain
关键词
methods: data analysis; methods: statistical; stars: fundamental parameters; NONLINEAR DIMENSIONALITY REDUCTION; INDEPENDENT COMPONENT ANALYSIS; BLIND SEPARATION; CLASSIFICATION; METALLICITY; ALGORITHMS; ABUNDANCES; STARS;
D O I
10.1093/mnras/stw3031
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The determination of stellar atmospheric parameters from spectra suffers the so-called curseof- dimensionality problem, which is related to the higher number of input variables (flux values) compared to the number of spectra available to fit a regression model (this collection of examples is known as the training set). This work evaluates the utility of several techniques for alleviating this problem in regression tasks where the objective is to estimate the effective temperature (T-eff), the surface gravity (log g), the metallicity ([M/H]) and/or the alpha-to-iron ratio ([alpha/Fe]). The goal of the techniques analysed here is to achieve data compression by representing the spectra with a number of variables much lower than the initially available set of fluxes. The experiments were performed with high-resolution spectra of stars in the 4000-8000 K range for different signal-to-noise ratio (SNR) regimes. We conclude that independent component analysis (ICA) performs better than the rest of techniques evaluated for all SNR regimes. We also assess the necessity to adapt the SNR of the spectra used to fit a regression model (training set) to the SNR of the spectra for which the atmospheric parameters are needed (evaluation set). Within the conditions of our experiments, we conclude that at most only two such regression models are needed (in the case of regression models for effective temperatures, those corresponding to SNR = 50 and 10) to cover the entire SNR range. Finally, we also compare the prediction accuracy of effective temperature regression models for increasing values of the training grid density and the same compression techniques.
引用
收藏
页码:4556 / 4571
页数:16
相关论文
共 50 条
  • [31] Assessing methods for telluric removal on atmospheric retrievals of high-resolution optical exoplanetary transmission spectra
    Maguire, Cathal
    Sedaghati, Elyar
    Gibson, Neale P.
    Smette, Alain
    Pino, Lorenzo
    ASTRONOMY & ASTROPHYSICS, 2024, 692
  • [32] Orbital parameters, masses and distance to β Centauri determined with the Sydney University Stellar Interferometer and high-resolution spectroscopy
    Davis, J
    Mendez, A
    Seneta, EB
    Tango, WJ
    Booth, AJ
    O'Byrne, JW
    Thorvaldson, ED
    Ausseloos, M
    Aerts, C
    Uytterhoeven, K
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2005, 356 (04) : 1362 - 1370
  • [33] Faint solar analogues at the limit of no reddening Precise atmospheric parameters from moderate low-resolution spectra
    Giribaldi, R. E.
    de Mello, G. F. Porto
    Lorenzo-Oliveira, D.
    Amores, E. B.
    Ubaldo-Melo, M. L.
    ASTRONOMY & ASTROPHYSICS, 2019, 629
  • [34] The ANTARESS workflow : I. Optimal extraction of spatially resolved stellar spectra with high-resolution transit spectroscopy
    Bourrier, V.
    Delisle, J. -B.
    Lovis, C.
    Cegla, H. M.
    Cretignier, M.
    Allart, R.
    Al Moulla, K.
    Tavella, S.
    Attia, O.
    Mounzer, D.
    Vaulato, V.
    Steiner, M.
    Vrignaud, T.
    Mercier, S.
    Dumusque, X.
    Ehrenreich, D.
    Seidel, J. V.
    Wyttenbach, A.
    Dethier, W.
    Pepe, F.
    ASTRONOMY & ASTROPHYSICS, 2024, 691
  • [35] Estimating stellar atmospheric parameters, absolute magnitudes and elemental abundances from the LAMOST spectra with Kernel-based principal component analysis
    Xiang, M. -S.
    Liu, X. -W.
    Shi, J. -R.
    Yuan, H. -B.
    Huang, Y.
    Luo, A. -L.
    Zhang, H. -W.
    Zhao, Y. -H.
    Zhang, J. -N.
    Ren, J. -J.
    Chen, B. -Q.
    Wang, C.
    Li, J.
    Huo, Z. -Y.
    Zhang, W.
    Wang, J. -L.
    Zhang, Y.
    Hou, Y. -H.
    Wang, Y. -F.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2017, 464 (03) : 3657 - 3678
  • [36] The ESO UVES/FEROS Large Programs of TESS OB pulsators I. Global stellar parameters from high-resolution spectroscopy
    Serebriakova, Nadya
    Tkachenko, Andrew
    Gebruers, Sarah
    Bowman, Dominic M.
    Van Reeth, Timothy
    Mahy, Laurent
    Burssens, Siemen
    IJspeert, Luc
    Sana, Hugues
    Aerts, Conny
    ASTRONOMY & ASTROPHYSICS, 2023, 676
  • [37] Wind of change: retrieving exoplanet atmospheric winds from high-resolution spectroscopy
    Seidel, J., V
    Ehrenreich, D.
    Pino, L.
    Bourrier, V
    Lavie, B.
    Allart, R.
    Wyttenbach, A.
    Lovis, C.
    ASTRONOMY & ASTROPHYSICS, 2020, 633
  • [38] Deep learning of multi-element abundances from high-resolution spectroscopic data
    Leung, Henry W.
    Bovy, Jo
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 483 (03) : 3255 - 3277
  • [39] HIGH-RESOLUTION SPECTROSCOPIC SURVEY OF 671-GK GIANTS .1. STELLAR ATMOSPHERE PARAMETERS AND ABUNDANCES
    MCWILLIAM, A
    ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 1990, 74 (04) : 1075 - 1128
  • [40] Chemical abundance analysis of 13 southern symbiotic giants from high-resolution spectra at ∼1.56 μm
    Galan, Cezary
    Mikolajewska, Joanna
    Hinkle, Kenneth H.
    Joyce, Richard R.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2017, 466 (02) : 2194 - 2201