Evaluation of data compression techniques for the inference of stellar atmospheric parameters from high-resolution spectra

被引:4
|
作者
Gonzalez-Marcos, A. [1 ]
Sarro, L. M. [2 ]
Ordieres-Mere, J. [3 ,5 ]
Bello-Garcia, A. [4 ]
机构
[1] Univ La Rioja, Dept Mech Engn, C San Jose de Calasanz 31, E-26004 Logrono, Spain
[2] UNED, ETSI Informat, Dept Inteligencia Artificial, C Juan del Rosal 16, E-28040 Madrid, Spain
[3] Univ Politecn Madrid, ETSII, Jose Gutierrez Abascal 2, E-28016 Madrid, Spain
[4] Univ Oviedo, Dept Construct & Ind Mfg, E-33203 Gijon, Spain
[5] PMQ Res Team, Madrid, Spain
关键词
methods: data analysis; methods: statistical; stars: fundamental parameters; NONLINEAR DIMENSIONALITY REDUCTION; INDEPENDENT COMPONENT ANALYSIS; BLIND SEPARATION; CLASSIFICATION; METALLICITY; ALGORITHMS; ABUNDANCES; STARS;
D O I
10.1093/mnras/stw3031
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The determination of stellar atmospheric parameters from spectra suffers the so-called curseof- dimensionality problem, which is related to the higher number of input variables (flux values) compared to the number of spectra available to fit a regression model (this collection of examples is known as the training set). This work evaluates the utility of several techniques for alleviating this problem in regression tasks where the objective is to estimate the effective temperature (T-eff), the surface gravity (log g), the metallicity ([M/H]) and/or the alpha-to-iron ratio ([alpha/Fe]). The goal of the techniques analysed here is to achieve data compression by representing the spectra with a number of variables much lower than the initially available set of fluxes. The experiments were performed with high-resolution spectra of stars in the 4000-8000 K range for different signal-to-noise ratio (SNR) regimes. We conclude that independent component analysis (ICA) performs better than the rest of techniques evaluated for all SNR regimes. We also assess the necessity to adapt the SNR of the spectra used to fit a regression model (training set) to the SNR of the spectra for which the atmospheric parameters are needed (evaluation set). Within the conditions of our experiments, we conclude that at most only two such regression models are needed (in the case of regression models for effective temperatures, those corresponding to SNR = 50 and 10) to cover the entire SNR range. Finally, we also compare the prediction accuracy of effective temperature regression models for increasing values of the training grid density and the same compression techniques.
引用
收藏
页码:4556 / 4571
页数:16
相关论文
共 50 条
  • [1] Inversion of stellar fundamental parameters from ESPaDOnS and Narval high-resolution spectra
    Paletou, F.
    Boehm, T.
    Watson, V.
    Trouilhet, J-F
    ASTRONOMY & ASTROPHYSICS, 2015, 573
  • [2] Fundamental stellar parameters and metallicities from Bayesian spectroscopy: application to low- and high-resolution spectra
    Schoenrich, Ralph
    Bergemann, Maria
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2014, 443 (01) : 698 - 717
  • [3] Stellar atmospheric parameters of FGK-type stars from high-resolution optical and near-infrared CARMENES spectra
    Marfil, E.
    Tabernero, H. M.
    Montes, D.
    Caballero, J. A.
    Soto, M. G.
    Gonzalez Hernandez, J., I
    Kaminski, A.
    Nagel, E.
    Jeffers, S., V
    Reiners, A.
    Ribas, I
    Quirrenbach, A.
    Amado, P. J.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2020, 492 (04) : 5470 - 5507
  • [4] Estimation of stellar atmospheric parameters from SDSS/SEGUE spectra
    Fiorentin, P. Re
    Bailer-Jones, C. A. L.
    Lee, Y. S.
    Beers, T. C.
    Sivarani, T.
    Wilhelm, R.
    Prieto, C. Allende
    Norris, J. E.
    ASTRONOMY & ASTROPHYSICS, 2007, 467 (03) : 1373 - 1387
  • [5] Stellar atmospheric parameters for 754 spectra from the X-shooter Spectral Library
    Arentsen, Anke
    Prugniel, Philippe
    Gonneau, Anais
    Lancon, Ariane
    Trager, Scott
    Peletier, Reynier
    Lyubenova, Mariya
    Chen, Yan-Ping
    Falcon Barroso, Jesus
    Sanchez Blazquez, Patricia
    Vazdekis, Alejandro
    ASTRONOMY & ASTROPHYSICS, 2019, 627
  • [6] ZASPE: a code to measure stellar atmospheric parameters and their covariance from spectra
    Brahm, Rafael
    Jordan, Andres
    Hartman, Joel
    Bakos, Gaspar
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2017, 467 (01) : 971 - 984
  • [7] Automated estimation of stellar fundamental parameters from low resolution spectra: the PLS method
    Zhang, Jian-Nan
    Luo, A-Li
    Zhao, Yong-Heng
    RESEARCH IN ASTRONOMY AND ASTROPHYSICS, 2009, 9 (06) : 712 - 724
  • [8] Inferring stellar parameters and their uncertainties from high-resolution spectroscopy using invertible neural networks
    Candebat, N.
    Sacco, G. G.
    Magrini, L.
    Belfiore, F.
    van der Swaelmen, M.
    Zibetti, S.
    ASTRONOMY & ASTROPHYSICS, 2024, 692
  • [9] The AMBRE project: A new synthetic grid of high-resolution FGKM stellar spectra
    de Laverny, P.
    Recio-Blanco, A.
    Worley, C. C.
    Plez, B.
    ASTRONOMY & ASTROPHYSICS, 2012, 544
  • [10] STECMAP:: STEllar content from high-resolution galactic spectra via Maximum A Posteriori
    Ocvirk, P
    Pichon, C
    Lançon, A
    Thiébaut, E
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2006, 365 (01) : 46 - 73