Impact of Pulsed Electrochemical Reduction of CO2 on the Formation of C2+ Products over Cu

被引:131
作者
Kim, Chanyeon [1 ,2 ]
Weng, Lien-Chun [1 ,2 ]
Bell, Alexis T. [1 ,2 ]
机构
[1] Lawrence Berkeley Natl Lab, Joint Ctr Artificial Photosynth, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA
关键词
electrochemical CO2 reduction; pulsed electrolysis; electrochemistry; unsteady state; copper;
D O I
10.1021/acscatal.0c02915
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We report the results of experimental and theoretical studies aimed at developing a detailed understanding of how pulsed electrolysis alters the production of the temporal evolution of products over Cu and in particular increases the formation of C2+ products. The catalyst is a Cu film sputtered onto the surface of a PTFE membrane, through which the products of CO2 reduction are sampled for analysis by differential electrochemical mass spectroscopy (DEMS). To avoid changes in the catalyst morphology, the cathode potential is set at -0.8 V vs RHE and -1.15 V vs RHE. We find that the faradaic efficiency (FE) for hydrogen evolution reaction (HER) minimizes and that for the carbon dioxide reduction reaction (CO2RR) maximizes when the durations at each potential are 10 s. Under these conditions, the FE for the HER decreases to 11%, relative to 22% for static electrolysis, at -1.15 V vs RHE, and the FE for the CO2RR increases to 89%, relative to 78% for static electrolysis. Pulsed electrolysis also increases the FE for C2+ products from 68% for static electrolysis to 81%. Temporal analysis of the products by DEMS reveals that while the variation in product concentrations near the cathode begins in synchrony at the start of pulsed electrolysis, the concentration of C2H4 increases and those of CO and H-2 decrease with extended time. We attribute these trends to an increase in the ratio of adsorbed CO to H on the catalyst surface. Simulation of pulsed electrolysis also shows that during the period when the cathode is at -0.8 V vs RHE, the local concentration of CO2 in the electrolyte near the cathode builds up. This inventory then allows electrolysis during the period at -1.15 V vs RHE to occur with a higher CO2 concentration than could be achieved for static electrolysis. The net effect of alternating cathode potentials is to enhance the local concentration of CO2, which favors the progress of the CO2RR relative to the HER and in particular the formation of C2+ products.
引用
收藏
页码:12403 / 12413
页数:11
相关论文
共 39 条
[1]  
[Anonymous], 2019, ACS APPL ENERG MATER, V2, P4551, DOI [DOI 10.1021/acsaem.9b00791, 10.1021/acsaem.9b00791]
[2]   The role of in situ generated morphological motifs and Cu(i) species in C2+ product selectivity during CO2 pulsed electroreduction [J].
Aran-Ais, Rosa M. ;
Scholten, Fabian ;
Kunze, Sebastian ;
Rizo, Ruben ;
Roldan Cuenya, Beatriz .
NATURE ENERGY, 2020, 5 (04) :317-325
[3]   Electrochemical CO2 Reduction: A Classification Problem [J].
Bagger, Alexander ;
Ju, Wen ;
Sofia Varela, Ana ;
Strasser, Peter ;
Rossmeisl, Jan .
CHEMPHYSCHEM, 2017, 18 (22) :3266-3273
[4]   Acetaldehyde as an Intermediate in the Electroreduction of Carbon Monoxide to Ethanol on Oxide-Derived Copper [J].
Bertheussen, Erlend ;
Verdaguer-Casadevall, Arnau ;
Ravasio, Davide ;
Montoya, Joseph H. ;
Trimarco, Daniel B. ;
Roy, Claudie ;
Meier, Sebastian ;
Wendland, Juergen ;
Norskov, Jens K. ;
Stephens, Ifan E. L. ;
Chorkendorff, Ib .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (04) :1450-1454
[5]   Mechanistic Insights into Electroreductive C-C Coupling between CO and Acetaldehyde into Multicarbon Products [J].
Chang, Xiaoxia ;
Malkani, Arnav ;
Yang, Xuan ;
Xu, Bingjun .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (06) :2975-2983
[6]   Nature of the Active Sites for CO Reduction on Copper Nanoparticles; Suggestions for Optimizing Performance [J].
Cheng, Tao ;
Xiao, Hai ;
Goddard, William A. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (34) :11642-11645
[7]   Standards and Protocols for Data Acquisition and Reporting for Studies of the Electrochemical Reduction of Carbon Dioxide [J].
Clark, Ezra L. ;
Resasco, Joaquin ;
Landers, Alan ;
Lin, John ;
Chung, Linh-Thao ;
Walton, Amber ;
Hahn, Christopher ;
Jaramillo, Thomas F. ;
Bell, Alexis T. .
ACS CATALYSIS, 2018, 8 (07) :6560-6570
[8]   Direct Observation of the Local Reaction Environment during the Electrochemical Reduction of CO2 [J].
Clark, Ezra L. ;
Bell, Alexis T. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2018, 140 (22) :7012-7020
[9]   Production of C2/C3 Oxygenates from Planar Copper Nitride-Derived Mesoporous Copper via Electrochemical Reduction of CO2 [J].
Ebaid, Mohamed ;
Jiang, Kun ;
Zhang, Zemin ;
Drisdell, Walter S. ;
Bell, Alexis T. ;
Cooper, Jason K. .
CHEMISTRY OF MATERIALS, 2020, 32 (07) :3304-3311
[10]   On the Electrochemical CO2 Reduction at Copper Sheet Electrodes with Enhanced Long-Term Stability by Pulsed Electrolysis [J].
Engelbrecht, Andreas ;
Uhlig, Conrad ;
Stark, Oliver ;
Haemmerle, Martin ;
Schmid, Guenter ;
Magori, Erhard ;
Wiesner-Fleischer, Kerstin ;
Fleischer, Maximilian ;
Moos, Ralf .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2018, 165 (15) :J3059-J3068