Mid-Infrared Spectrometer Using Opto-Nanofluidic Slot-Waveguide for Label-Free On-Chip Chemical Sensing

被引:87
作者
Lin, Pao Tai [1 ]
Kwok, Sen Wai [2 ]
Lin, Hao-Yu Greg [3 ]
Singh, Vivek [1 ]
Kimerling, Lionel C. [1 ]
Whitesides, George M. [2 ]
Agarwal, Anu [1 ]
机构
[1] MIT, Microphoton Ctr, Cambridge, MA 02139 USA
[2] Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02138 USA
[3] Ctr Nanoscale Syst, Cambridge, MA 02138 USA
关键词
Midinfrared; opto-nanofluidics; on-chip; sensors; SILICON; SINGLE; MICROFLUIDICS;
D O I
10.1021/nl403817z
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A mid-infrared (mid-IR) spectrometer for label-free on-chip chemical sensing was developed using an engineered nanofluidic channel consisting of a Si-liquid-Si slot-structure. Utilizing the large refractive index contrast (Delta n similar to 2) between the liquid core of the waveguide and the Si cladding, a broadband mid-IR lightwave can be efficiently guided and confined within a nanofluidic capillary (<= 100 nm wide). The optical-field enhancement, together with the direct interaction between the probe light and the analyte, increased the sensitivity for chemical detection by 50 times when compared to evanescent-wave sensing. This spectrometer distinguished several common organic liquids (e.g., n-bromohexane, toluene, isopropanol) accurately and could determine the ratio of chemical species (e.g., acetonitrile and ethanol) at low concentration (<5 mu L/mL) in a mixture through spectral scanning over their characteristic absorption peaks in the mid-IR regime. The combination of CMOS-compatible planar mid-IR microphotonics, and a high-throughput nanofluidic sensor system, provides a unique platform for chemical detection.
引用
收藏
页码:231 / 238
页数:8
相关论文
共 35 条
[1]  
[Anonymous], 2002, Handbook of vibrational spectroscopy
[2]   Thinner, Smaller, Faster: IR Techniques To Probe the Functionality of Biological and Biomimetic Systems [J].
Ataka, Kenichi ;
Kottke, Tilman ;
Heberle, Joachim .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2010, 49 (32) :5416-5424
[3]  
Baxter J., 2012, NAT PHOTONICS, V6, P412
[4]   Fourier transform infrared imaging: Theory and practice [J].
Bhargava, R ;
Levin, IW .
ANALYTICAL CHEMISTRY, 2001, 73 (21) :5157-5167
[5]   Optofluidic opportunities in global health, food, water and energy [J].
Chen, Yih-Fan ;
Jiang, Li ;
Mancuso, Matthew ;
Jain, Aadhar ;
Oncescu, Vlad ;
Erickson, David .
NANOSCALE, 2012, 4 (16) :4839-4857
[6]  
Dam JS, 2012, NAT PHOTONICS, V6, P788, DOI [10.1038/NPHOTON.2012.231, 10.1038/nphoton.2012.231]
[7]   A compact optofluidic cytometer with integrated liquid-core/PDMS-cladding waveguides [J].
Fei, Peng ;
Chen, Zitian ;
Men, Yongfan ;
Li, Ang ;
Shen, Yiran ;
Huang, Yanyi .
LAB ON A CHIP, 2012, 12 (19) :3700-3706
[8]   Infrared spectroscopic imaging for histopathologic recognition [J].
Fernandez, DC ;
Bhargava, R ;
Hewitt, SM ;
Levin, IW .
NATURE BIOTECHNOLOGY, 2005, 23 (04) :469-474
[9]   Microfluidic Chips for Point-of-Care Immunodiagnostics [J].
Gervais, Luc ;
de Rooij, Nico ;
Delamarche, Emmanuel .
ADVANCED MATERIALS, 2011, 23 (24) :H151-H176
[10]   UV patterned nanoporous solid-liquid core waveguides [J].
Gopalakrishnan, Nimi ;
Sagar, Kaushal S. ;
Christiansen, Mads Brokner ;
Vigild, Martin E. ;
Ndoni, Sokol ;
Kristensen, Anders .
OPTICS EXPRESS, 2010, 18 (12) :12903-12908