Using the gene ontology for microarray data mining: A comparison of methods and application to age effects in human prefrontal cortex

被引:166
作者
Pavlidis, P
Qin, J
Arango, V
Mann, JJ
Sibille, E
机构
[1] Columbia Univ, Dept Biomed Informat, New York, NY 10032 USA
[2] Columbia Univ, Columbia Genome Ctr, New York, NY 10032 USA
[3] Columbia Univ, Dept Psychiat, New York, NY USA
[4] New York State Psychiat Inst & Hosp, Dept Anat & Cell Biol, New York, NY 10032 USA
[5] New York State Psychiat Inst & Hosp, Dept Neurosci, New York, NY 10032 USA
关键词
age; brain; gene expression; microarray; prefrontal cortex; statistics;
D O I
10.1023/B:NERE.0000023608.29741.45
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
One of the challenges in the analysis of gene expression data is placing the results in the context of other data available about genes and their relationships to each other. Here, we approach this problem in the study of gene expression changes associated with age in two areas of the human prefrontal cortex, comparing two computational methods. The first method, "overrepresentation analysis" (ORA), is based on statistically evaluating the fraction of genes in a particular gene ontology class found among the set of genes showing age-related changes in expression. The second method, "functional class scoring" (FCS), examines the statistical distribution of individual gene scores among all genes in the gene ontology class and does not involve an initial gene selection step. We find that FCS yields more consistent results than ORA, and the results of ORA depended strongly on the gene selection threshold. Our findings highlight the utility of functional class scoring for the analysis of complex expression data sets and emphasize the advantage of considering all available genomic information rather than sets of genes that pass a predetermined "threshold of significance."
引用
收藏
页码:1213 / 1222
页数:10
相关论文
共 27 条
[1]  
[Anonymous], 1993, Resampling-based multiple testing: Examples and methods for P-value adjustment
[2]   Gene Ontology: tool for the unification of biology [J].
Ashburner, M ;
Ball, CA ;
Blake, JA ;
Botstein, D ;
Butler, H ;
Cherry, JM ;
Davis, AP ;
Dolinski, K ;
Dwight, SS ;
Eppig, JT ;
Harris, MA ;
Hill, DP ;
Issel-Tarver, L ;
Kasarskis, A ;
Lewis, S ;
Matese, JC ;
Richardson, JE ;
Ringwald, M ;
Rubin, GM ;
Sherlock, G .
NATURE GENETICS, 2000, 25 (01) :25-29
[3]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[4]  
Blalock EM, 2003, J NEUROSCI, V23, P3807
[5]   A truncated isoform of Ca2+/calmodulin-dependent protein kinase II expressed in human islets of Langerhans may result from trans-splicing [J].
Breen, MA ;
Ashcroft, SJH .
FEBS LETTERS, 1997, 409 (03) :375-379
[6]   Cysteine-rich LIM-only proteins CRP1 and CRP2 are potent smooth muscle differentiation cofactors [J].
Chang, DF ;
Belaguli, NS ;
Iyer, D ;
Roberts, WB ;
Wu, SP ;
Dong, XR ;
Marx, JG ;
Moore, MS ;
Beckerle, MC ;
Majesky, MW ;
Schwartz, RJ .
DEVELOPMENTAL CELL, 2003, 4 (01) :107-118
[7]   MAPPFinder: using Gene Ontology and GenMAPP to create a global gene-expression profile from microarray data [J].
Doniger, SW ;
Salomonis, N ;
Dahlquist, KD ;
Vranizan, K ;
Lawlor, SC ;
Conklin, BR .
GENOME BIOLOGY, 2003, 4 (01)
[8]   Global functional profiling of gene expression [J].
Draghici, S ;
Khatri, P ;
Martins, RP ;
Ostermeier, GC ;
Krawetz, SA .
GENOMICS, 2003, 81 (02) :98-104
[9]  
Dudoit S, 2003, BIOTECHNIQUES, P45
[10]  
Efron B., 1994, INTRO BOOTSTRAP, DOI DOI 10.1201/9780429246593