A note on n! modulo p

被引:6
作者
Garaev, M. Z. [1 ]
Hernandez, J. [1 ]
机构
[1] Univ Nacl Autonoma Mexico, Ctr Ciencias Matemat, Morelia 58089, Michoacan, Mexico
来源
MONATSHEFTE FUR MATHEMATIK | 2017年 / 182卷 / 01期
关键词
Factorials; Congruences; Exponential and character sums; Additive combinatorics; POINTS; CURVES; SUMS;
D O I
10.1007/s00605-015-0867-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let p be a prime, epsilon > 0 and 0 < L + 1 < L + N < p. We prove that if p(1/2+epsilon) < N < p(1-epsilon), then #{n! (mod p); L + 1 <= n <= L + N} > c( N log N)(1/2), c = c(epsilon) > 0. We use this bound to show that any lambda not equivalent to 0 (mod p) can be represented in the form lambda = n(1)!...n(7)! (mod p), where n(i) = o(p(11/12)). This refines the previously known range for n(i).
引用
收藏
页码:23 / 31
页数:9
相关论文
共 14 条
[11]  
García VC, 2007, BOL SOC MAT MEX, V13, P1
[12]  
Guy R. K., 1994, UNSOLVED PROBLEMS MU
[13]  
Tao VT, 2006, CAM ST AD M, V105, P1, DOI 10.1017/CBO9780511755149
[14]  
Vinogradov I. M., 1954, Elements of Number Theory