Singular Solutions of the Generalized Dhombres Functional Equation

被引:10
作者
Reich, L. [1 ]
Smital, J. [2 ]
Stefankova, M. [2 ]
机构
[1] Karl Franzens Univ Graz, Inst Math, A-8010 Graz, Austria
[2] Silesian Univ, Math Inst, Opava 74601, Czech Republic
关键词
Chaotic behavior; Dhombres functional equation; dynamical systems; invariant curves; iterative functional equation; periodic orbits;
D O I
10.1007/s00025-013-0345-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider singular solutions of the functional equation f(xf(x)) =phi(f(x)) where phi is a given and f an unknown continuous map R+ -> R+. A solution f is regular if the sets R-f boolean AND (0,1]and R-f boolean AND [1,infinity), where R-f is the range of f, are phi-invariant; otherwise f is singular. We show that for singular solutions the associated dynamical system (R-f , phi vertical bar R-f) can have strange properties unknown for the regular solutions. In particular, we show that phi vertical bar R-f can have a periodic point of period 3 and hence can be chaotic in a strong sense. We also provide an effective method of construction of singular solutions.
引用
收藏
页码:251 / 261
页数:11
相关论文
共 11 条
[1]  
Baron K., 2001, AEQUATIONES MATH, V61, P1, DOI DOI 10.1007/S000100050159
[2]  
Block L., 1991, SPRINGER LECT NOTES, V1513
[3]  
DHOMBRES J, 1975, CR ACAD SCI A MATH, V281, P809
[4]  
Kahlig P., 2001, Aequationes Math., V62, P18
[5]  
Kahlig P., 1995, Results Math., V27, P362
[6]  
Kuczma M., 1994, ENCY MATH ITS APPL, V32
[7]   On generalized Dhombres equations with non-constant rational solutions in the complex plane [J].
Reich, L. ;
Smital, J. ;
Stefankova, M. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 399 (02) :542-550
[8]   Functional equation of Dhombres type - a simple equation with many open problems [J].
Reich, L. ;
Smital, J. .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2009, 15 (11-12) :1179-1191
[9]  
Reich L., 2004, Math. Bohem., V129, P399
[10]  
Reich L., 2011, PUBL MATH-DEBRECEN, V78