Nonnegativity of CR Paneitz Operator and Its Application to the CR Obata's Theorem

被引:36
作者
Chang, Shu-Cheng [1 ]
Chiu, Hung-Lin [2 ]
机构
[1] Natl Taiwan Univ, Dept Math, Taipei 10617, Taiwan
[2] Natl Cent Univ, Dept Math, Chungli 32054, Taiwan
关键词
Lichnerowicz-Obata theorem; Pseudohermitian manifold; Webster metric; Tanaka-Webster curvature; Pseudohermitian torsion; CR Paneitz operator; Sub-Laplacian; 1ST POSITIVE EIGENVALUE; SUBLAPLACIAN;
D O I
10.1007/s12220-008-9060-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we first prove the CR analogue of M. Obata's theorem on a closed pseudohermitian (2n+1)-manifold with free pseudohermitian torsion. Secondly, we have the CR analogue of Li-Yau's eigenvalue estimate on the lower bound estimate of positive first eigenvalue of the sub-Laplacian on a closed pseudohermitian (2n+1)-manifold with a more general curvature condition for na parts per thousand yen2. The key step is a discovery of CR analogue of Bochner formula which involving the CR Paneitz operator and nonnegativity of CR Paneitz operator P (0) for na parts per thousand yen2.
引用
收藏
页码:261 / 287
页数:27
相关论文
共 13 条
[1]   Pseudo-Einstein and Q-fiat metrics with eigenvalue estimates on CR-hypersurfaces [J].
Cao, Jianguo ;
Chang, Shu-Cheng .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2007, 56 (06) :2839-2857
[2]  
CHANG SC, 2003, CR ANALOGUE OBATAS T
[3]   A fourth order curvature flow on a CR 3-manifold [J].
Chang, Shu-Cheng ;
Cheng, Jih-Hsin ;
Chiu, Hung-Lin .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2007, 56 (04) :1793-1826
[4]   SMOOTH SOLUTIONS OF DEGENERATE LAPLACIANS ON STRICTLY PSEUDOCONVEX DOMAINS [J].
GRAHAM, CR ;
LEE, JM .
DUKE MATHEMATICAL JOURNAL, 1988, 57 (03) :697-720
[5]   THE 1ST EIGENVALUE OF A SUBLAPLACIAN ON A PSEUDOHERMITIAN MANIFOLD [J].
GREENLEAF, A .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1985, 10 (02) :191-217
[6]  
Hirachi K., 1992, LECT NOTES PURE APPL, V143, P67
[7]   The sharp lower bound for the first positive eigenvalue of the sublaplacian on a pseudohermitian 3-manifold [J].
Hung-Lin-Chiu .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2006, 30 (01) :81-96
[8]   PSEUDO-EINSTEIN STRUCTURES ON CR MANIFOLDS [J].
LEE, JM .
AMERICAN JOURNAL OF MATHEMATICS, 1988, 110 (01) :157-178
[10]  
Li P., 1980, Geometry of the Laplace Operator (Proc. Sympos. Pure Math., Univ. Hawaii, Honolulu, Hawaii, P205