Runx1 and Runx3 Are Downstream Effectors of Nanog in Promoting Osteogenic Differentiation of the Mouse Mesenchymal Cell Line C3H10T1/2

被引:6
作者
Saito, Tadahito [1 ,3 ]
Ohba, Shinsuke [2 ]
Yano, Fumiko [1 ]
Seto, Ichiro [1 ]
Yonehara, Yoshiyuki [3 ]
Takato, Tsuyoshi [1 ]
Ogasawara, Toru [1 ]
机构
[1] Univ Tokyo, Grad Sch Med, Dept Oral & Maxillofacial Surg, Tokyo 1138655, Japan
[2] Univ Tokyo, Grad Sch Med, Dept Bioengn, Tokyo 1138655, Japan
[3] Nihon Univ, Sch Dent, Dept Oral & Maxillofacial Surg, Tokyo 1018310, Japan
基金
日本学术振兴会;
关键词
STEM-CELLS; LIFE-SPAN; EXPRESSION; PLURIPOTENCY; INDUCTION; MAINTAINS; TARGET; CBFA1; GENE;
D O I
10.1089/cell.2014.0059
中图分类号
Q813 [细胞工程];
学科分类号
摘要
Previously, we reported that the transcription factor Nanog, which maintains the self-renewal of embryonic stem cells (ESCs), promotes the osteogenic differentiation of the mouse mesenchymal cell line C3H10T1/2 through a genome reprogramming process. In the present study, to clarify the mechanism underlying the multipotency of mesenchymal stem cells (MSCs) and to develop a novel approach to bone regenerative medicine, we attempted to identify the downstream effectors of Nanog in promoting osteogenic differentiation of mouse mesenchymal cells. We demonstrated that Runx1 and Runx3 are the downstream effectors of Nanog, especially in the early and intermediate osteogenic differentiation of the mouse mesenchymal cell line C3H10T1/2.
引用
收藏
页码:227 / 234
页数:8
相关论文
共 34 条
[1]  
Adachi N, 2005, J RHEUMATOL, V32, P1615
[2]   Core transcriptional regulatory circuitry in human embryonic stem cells [J].
Boyer, LA ;
Lee, TI ;
Cole, MF ;
Johnstone, SE ;
Levine, SS ;
Zucker, JR ;
Guenther, MG ;
Kumar, RM ;
Murray, HL ;
Jenner, RG ;
Gifford, DK ;
Melton, DA ;
Jaenisch, R ;
Young, RA .
CELL, 2005, 122 (06) :947-956
[3]   Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells [J].
Chambers, I ;
Colby, D ;
Robertson, M ;
Nichols, J ;
Lee, S ;
Tweedie, S ;
Smith, A .
CELL, 2003, 113 (05) :643-655
[4]   Forced expression of Sox2 or Nanog in human bone marrow derived mesenchymal stem cells maintains their expansion and differentiation capabilities [J].
Go, Masahiro J. ;
Takenaka, Chiemi ;
Ohgushi, Hajime .
EXPERIMENTAL CELL RESEARCH, 2008, 314 (05) :1147-1154
[5]   A Randomized, Double-Blind, Placebo-Controlled, Dose-Escalation Study of Intravenous Adult Human Mesenchymal Stem Cells (Prochymal) After Acute Myocardial Infarction [J].
Hare, Joshua M. ;
Traverse, Jay H. ;
Henry, Timothy D. ;
Dib, Nabil ;
Strumpf, Robert K. ;
Schulman, Steven P. ;
Gerstenblith, Gary ;
DeMaria, Anthony N. ;
Denktas, Ali E. ;
Gammon, Roger S. ;
Hermiller, James B., Jr. ;
Reisman, Mark A. ;
Schaer, Gary L. ;
Sherman, Warren .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2009, 54 (24) :2277-2286
[6]   Downregulation of NANOG induces differentiation of human embryonic stem cells to extraembryonic lineages [J].
Hyslop, L ;
Stojkovic, M ;
Armstrong, L ;
Walter, T ;
Stojkovic, P ;
Przyborski, S ;
Herbert, M ;
Murdoch, A ;
Strachan, T ;
Lako, M .
STEM CELLS, 2005, 23 (08) :1035-1043
[7]   Runx3 is essential for the target-specific axon pathfinding of trkC-expressing dorsal root ganglion neurons [J].
Inoue, K ;
Ozaki, S ;
Ito, K ;
Iseda, T ;
Kawaguchi, S ;
Ogawa, M ;
Bae, SC ;
Yamashita, N ;
Itohara, S ;
Kudo, N ;
Ito, Y .
BLOOD CELLS MOLECULES AND DISEASES, 2003, 30 (02) :157-160
[8]   Runx1 and Runx2 cooperate during sternal morphogenesis [J].
Kimura, Ayako ;
Inose, Hiroyuki ;
Yano, Fumiko ;
Fujita, Koji ;
Ikeda, Toshiyuki ;
Sato, Shingo ;
Iwasaki, Makiko ;
Jinno, Tetsuya ;
Ae, Keisuke ;
Fukumoto, Seiji ;
Takeuchi, Yasuhiro ;
Itoh, Hiroshi ;
Imamura, Takeshi ;
Kawaguchi, Hiroshi ;
Chung, Ung-il ;
Martin, James F. ;
Iseki, Sachiko ;
Shinomiya, Ken-ichi ;
Takeda, Shu .
DEVELOPMENT, 2010, 137 (07) :1159-1167
[9]   Nanog inhibits the switch of myogenic cells towards the osteogenic lineage [J].
Kochupurakkal, Bose S. ;
Sarig, Rachel ;
Fuchs, Ora ;
Piestun, Dan ;
Rechavi, Gidi ;
Givol, David .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2008, 365 (04) :846-850
[10]   Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts [J].
Komori, T ;
Yagi, H ;
Nomura, S ;
Yamaguchi, A ;
Sasaki, K ;
Deguchi, K ;
Shimizu, Y ;
Bronson, RT ;
Gao, YH ;
Inada, M ;
Sato, M ;
Okamoto, R ;
Kitamura, Y ;
Yoshiki, S ;
Kishimoto, T .
CELL, 1997, 89 (05) :755-764