Size and surface coverage density are major factors in determining thiol modified gold nanoparticles characteristics

被引:8
作者
Farcas, A. [1 ]
Janosi, L. [1 ]
Astilean, S. [1 ,2 ]
机构
[1] Natl Inst Res & Dev Isotop & Mol Technol, 67-103 Donat, Cluj Napoca 400293, Romania
[2] Babes Bolyai Univ, Fac Phys, Dept Biomol Phys, Str M Kogalniceanu Nr 1, Cluj Napoca, Romania
关键词
Gold nanoparticles; Molecular dynamics simulations; Thiol chains; SELF-ASSEMBLED MONOLAYERS; MOLECULAR-DYNAMICS; FORCE-FIELD; INTERFACE; SHAPE; THERMODYNAMICS; VALIDATION; ANTIBODIES; DELIVERY; PROTEIN;
D O I
10.1016/j.comptc.2021.113581
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Gold nanoparticles (GNPs) have prominent advantages due to their ultrasmall size and high surface-area-to volume ratio, with multiple and broad applications in medical, agricultural and pharmaceutical industries. GNPs can be functionalized by various molecules including polysaccharides, proteins, peptides, fatty acids, plasmids, or oligonucleotides. GNP surface represents one of the most easily functionalized platforms, the complex level of surface decoration being used to obtain efficacy and to limit off-target toxicity. In the present study, molecular dynamics simulations of thiol modified GNPs were performed to provide insights at the molecular level for the design of conjugated nanoparticles. Our study shows that due to the significant enhancement in the conformational order and packing of the thiol chains, both nanoparticle size and thiol coverage density can be used to modify the structural properties of thiol-modified GNPs (e.g. end-to-end distance, shape factor, tilt angle of thiol chains). This strategy has a lot of potential in designing any (thiol-modified gold) nanoparticlebased carriers (such as those that are used to find and modify the genes that are associated with diseases).
引用
收藏
页数:7
相关论文
共 67 条
[1]   Advantages and Limitations of Current Techniques for Analyzing the Biodistribution of Nanoparticles [J].
Arms, Lauren ;
Smith, Doug W. ;
Flynn, Jamie ;
Palmer, William ;
Martin, Antony ;
Woldu, Ameha ;
Hua, Susan .
FRONTIERS IN PHARMACOLOGY, 2018, 9
[2]   Gold glyconanoparticles:: Synthetic polyvalent ligands mimicking glycocalyx-like surfaces as tools for glycobiological studies [J].
Barrientos, AG ;
de la Fuente, JM ;
Rojas, TC ;
Fernández, A ;
Penadés, S .
CHEMISTRY-A EUROPEAN JOURNAL, 2003, 9 (09) :1909-1921
[3]   Manipulation of in Vitro Angiogenesis Using Peptide-Coated Gold Nanoparticles [J].
Bartczak, Dorota ;
Muskens, Otto L. ;
Sanchez-Elsner, Tilman ;
Kanaras, Antonios G. ;
Millar, Timothy M. .
ACS NANO, 2013, 7 (06) :5628-5636
[4]   Size-Dependent Transition to High-Symmetry Chiral Structures in AgCu, AgCo, AgNi, and AuNi Nanoalloys [J].
Bochicchio, Davide ;
Ferrando, Riccardo .
NANO LETTERS, 2010, 10 (10) :4211-4216
[5]   Gold nanoparticle conjugates: recent advances toward clinical applications [J].
Cao-Milan, Roberto ;
Liz-Marzan, Luis M. .
EXPERT OPINION ON DRUG DELIVERY, 2014, 11 (05) :741-752
[6]   Shape- and size-dependent refractive index sensitivity of gold nanoparticles [J].
Chen, Huanjun ;
Kou, Xiaoshan ;
Yang, Zhi ;
Ni, Weihai ;
Wang, Jianfang .
LANGMUIR, 2008, 24 (10) :5233-5237
[7]   Gold nanocages: Bioconjugation and their potential use as optical imaging contrast agents [J].
Chen, J ;
Saeki, F ;
Wiley, BJ ;
Cang, H ;
Cobb, MJ ;
Li, ZY ;
Au, L ;
Zhang, H ;
Kimmey, MB ;
Li, XD ;
Xia, YN .
NANO LETTERS, 2005, 5 (03) :473-477
[8]   Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease [J].
Cho, Seung Woo ;
Kim, Sojung ;
Kim, Jong Min ;
Kim, Jin-Soo .
NATURE BIOTECHNOLOGY, 2013, 31 (03) :230-232
[9]   Spherical Nucleic Acids [J].
Cutler, Joshua I. ;
Auyeung, Evelyn ;
Mirkin, Chad A. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (03) :1376-1391
[10]   Gold Nanoparticles for Nucleic Acid Delivery [J].
Ding, Ya ;
Jiang, Ziwen ;
Saha, Krishnendu ;
Kim, Chang Soo ;
Kim, Sung Tae ;
Landis, Ryan F. ;
Rotello, Vincent M. .
MOLECULAR THERAPY, 2014, 22 (06) :1075-1083