Multiparty correlation measure based on the cumulant

被引:45
作者
Zhou, D. L.
Zeng, B.
Xu, Z.
You, L.
机构
[1] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA
[2] MIT, Dept Phys, Cambridge, MA 02139 USA
[3] Tsinghua Univ, Ctr Adv Study, Beijing 100084, Peoples R China
来源
PHYSICAL REVIEW A | 2006年 / 74卷 / 05期
关键词
D O I
10.1103/PhysRevA.74.052110
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We propose a genuine multiparty correlation measure for a multiparty quantum system as the trace norm of the cumulant of the state. The legitimacy of our multiparty correlation measure is explicitly demonstrated by proving it satisfies the five basic conditions required for a correlation measure. As an application we construct an efficient algorithm for the calculation of our measures for all stabilizer states.
引用
收藏
页数:8
相关论文
共 29 条
[1]   Generalized Schmidt decomposition and classification of three-quantum-bit states [J].
Acín, A ;
Andrianov, A ;
Costa, L ;
Jané, E ;
Latorre, JI ;
Tarrach, R .
PHYSICAL REVIEW LETTERS, 2000, 85 (07) :1560-1563
[2]   Chain relations of reduced distribution functions and their associated correlation functions [J].
Alavi, S ;
Wei, GW ;
Snider, RF .
JOURNAL OF CHEMICAL PHYSICS, 1998, 108 (02) :706-714
[3]  
[Anonymous], 2005, FUNCTIONAL INTEGRATI, DOI DOI 10.1002/0471667196.ESS2132.PUB2
[4]  
Bennett CH, 1996, PHYS REV A, V54, P3824, DOI 10.1103/PhysRevA.54.3824
[5]   Persistent entanglement in arrays of interacting particles [J].
Briegel, HJ ;
Raussendorf, R .
PHYSICAL REVIEW LETTERS, 2001, 86 (05) :910-913
[6]   Canonical decompositions of n-qubit quantum computations and concurrence [J].
Bullock, SS ;
Brennen, GK .
JOURNAL OF MATHEMATICAL PHYSICS, 2004, 45 (06) :2447-2467
[7]   STRUCTURE OF CORRELATION-FUNCTIONS [J].
CARRUTHERS, P .
PHYSICAL REVIEW A, 1991, 43 (06) :2632-2639
[8]   Three qubits can be entangled in two inequivalent ways [J].
Dur, W. ;
Vidal, G. ;
Cirac, J.I. .
Physical Review A - Atomic, Molecular, and Optical Physics, 2000, 62 (06) :062314-062311
[9]  
Fattal D., QUANTPH0406168
[10]  
Fisher RA, 1932, P LOND MATH SOC, V33, P195