Non-Hermitian random matrix models: Free random variable approach

被引:71
|
作者
Janik, RA
Nowak, MA
Papp, G
Wambach, J
Zahed, I
机构
[1] GSI DARMSTADT, D-64291 DARMSTADT, GERMANY
[2] TH DARMSTADT, INST KERNPHYS, D-6100 DARMSTADT, GERMANY
[3] EOTVOS LORAND UNIV, INST THEORET PHYS, BUDAPEST, HUNGARY
[4] SUNY STONY BROOK, DEPT PHYS, STONY BROOK, NY 11794 USA
关键词
D O I
10.1103/PhysRevE.55.4100
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Using the standard concepts of free random variables, we show that for a large class of non-Hermitian random matrix models, the support of the eigenvalue distribution follows from their Hermitian analogs using a conformal transformation. We also extend the concepts of free random variables to the class of non-Hermitian matrices, and apply them to the models discussed by Ginibre-Girko (elliptic ensemble) [J. Ginibre, J. Math. Phys. 6, 1440 (1965); V. L. Girko, Spectral Theory of Random Matrices (in Russian) (Nauka, Moscow, 1988)] and Mahaux-Weidenmuller (chaotic resonance scattering) [C. Mahaux and H. A. Weidenmuller, Shell-model Approach to Nuclear Reactions (North-Holland, Amsterdam, 1969)].
引用
收藏
页码:4100 / 4106
页数:7
相关论文
共 50 条
  • [1] Non-hermitian random matrix models
    Janik, RA
    Nowak, MA
    Papp, G
    Zahed, I
    NUCLEAR PHYSICS B, 1997, 501 (03) : 603 - 642
  • [2] New developments in Non-hermitian Random Matrix Models
    Janik, RA
    Nowak, MA
    Papp, G
    Zahed, I
    NEW DEVELOPMENTS IN QUANTUM FIELD THEORY, 1998, 366 : 297 - 314
  • [3] Correlations of eigenvectors for non-Hermitian random-matrix models
    Janik, RA
    Norenberg, W
    Nowak, MA
    Papp, G
    Zahed, I
    PHYSICAL REVIEW E, 1999, 60 (03): : 2699 - 2705
  • [4] Green's functions in non-hermitian random matrix models
    Janik, RA
    Nowak, MA
    Papp, G
    Zahed, I
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2001, 9 (03): : 456 - 462
  • [5] Duality in non-Hermitian random matrix theory
    Liu, Dang-Zheng
    Zhang, Lu
    NUCLEAR PHYSICS B, 2024, 1004
  • [6] Non-Hermitian Euclidean random matrix theory
    Goetschy, A.
    Skipetrov, S. E.
    PHYSICAL REVIEW E, 2011, 84 (01):
  • [7] Non-hermitian random matrix theory: Method of hermitian reduction
    Feinberg, J
    Zee, A
    NUCLEAR PHYSICS B, 1997, 504 (03) : 579 - 608
  • [8] Eigenvector correlations in non-Hermitian random matrix ensembles
    Mehlig, B
    Chalker, JT
    ANNALEN DER PHYSIK, 1998, 7 (5-6) : 427 - 436
  • [9] Eigenvector statistics in non-Hermitian random matrix ensembles
    Chalker, JT
    Mehlig, B
    PHYSICAL REVIEW LETTERS, 1998, 81 (16) : 3367 - 3370
  • [10] On the remarkable spectrum of a non-Hermitian random matrix model
    Holz, DE
    Orland, H
    Zee, A
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (12): : 3385 - 3400