Design and Implementation of Low-Cost Fog Computing Architecture for IoT-Based Applications

被引:1
作者
Zainudin, Ahmad [1 ]
Nwakanma, Cosmas Ifeanyi [2 ]
Kim, Dong-Seong [2 ]
Lee, Jae-Min [2 ]
机构
[1] Kumoh Natl Inst Technol, Dept Elect Engn, Gumi 39177, South Korea
[2] Kumoh Natl Inst Technol, Dept IT Convergence Engn, Gumi 39177, South Korea
来源
12TH INTERNATIONAL CONFERENCE ON ICT CONVERGENCE (ICTC 2021): BEYOND THE PANDEMIC ERA WITH ICT CONVERGENCE INNOVATION | 2021年
关键词
fog computing; task offloading; low-cost; raspberry pi; smart home;
D O I
10.1109/ICTC52510.2021.9620813
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Internet of Things (IoT), currently cloud IoT infrastructure is shifting toward fog computing through the task offloading process. Fog computing provides computing capabilities that bring closer to the IoT devices. By task offloading shifting to the fog, nodes can avoid high network congestion. Fog computing can improve the quality of service, especially for delay-sensitive applications by enabling low latency requirements. In the IoT infrastructure, low-cost devices are used for less expensive infrastructure deployments. Raspberry pi is used for computing infrastructure with cheaper development. A small single-board computer not only has high computing capacity but also allows high portability.
引用
收藏
页码:810 / 813
页数:4
相关论文
共 9 条
  • [1] Elastic Computing in the Fog on Internet of Things to Improve the Performance of Low Cost Nodes
    Fayos-Jordan, Rafael
    Felici-Castell, Santiago
    Segura-Garcia, Jaume
    Pastor-Aparicio, Adolfo
    Lopez-Ballester, Jesus
    [J]. ELECTRONICS, 2019, 8 (12)
  • [2] Edge computational task offloading scheme using reinforcement learning for IIoT scenario
    Hossain, Md. Sajjad
    Nwakanma, Cosmas Ifeanyi
    Lee, Jae Min
    Kim, Dong-Seong
    [J]. ICT EXPRESS, 2020, 6 (04): : 291 - 299
  • [3] Efficient Task Offloading for IoT-Based Applications in Fog Computing Using Ant Colony Optimization
    Hussein, Mohamed K.
    Mousa, Mohamed H.
    [J]. IEEE ACCESS, 2020, 8 : 37191 - 37201
  • [4] Combining Fog Computing with Sensor Mote Machine Learning for Industrial IoT
    Lavassani, Mehrzad
    Forsstrom, Stefan
    Jennehag, Ulf
    Zhang, Tingting
    [J]. SENSORS, 2018, 18 (05)
  • [5] Martín C, 2020, MEDD C EMBED COMPUT, P224
  • [6] Edge AI prospect using the NeuroEdge computing system: Introducing a novel neuromorphic technology
    Nwakanma, Cosmas Ifeanyi
    Kim, Jae-Woo
    Lee, Jae-Min
    Kim, Dong-Seong
    [J]. ICT EXPRESS, 2021, 7 (02): : 152 - 157
  • [7] FogNetSim plus plus : A Toolkit for Modeling and Simulation of Distributed Fog Environment
    Qayyum, Tariq
    Malik, Asad Waqar
    Khattak, Muazzam A. Khan
    Khalid, Osman
    Khan, Samee U.
    [J]. IEEE ACCESS, 2018, 6 : 63570 - 63583
  • [8] FRATO: Fog Resource Based Adaptive Task Offloading for Delay-Minimizing IoT Service Provisioning
    Tran-Dang, Hoa
    Kim, Dong-Seong
    [J]. IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2021, 32 (10) : 2491 - 2508
  • [9] Task Priority-based Resource Allocation Algorithm for Task Offloading in Fog-enabled IoT Systems
    Tran-Dang, Hoa
    Kim, Dong-Seong
    [J]. 35TH INTERNATIONAL CONFERENCE ON INFORMATION NETWORKING (ICOIN 2021), 2021, : 674 - 679