Biological properties and therapeutic effects of plant-derived nanovesicles

被引:92
作者
Di Gioia, Sante [2 ]
Hossain, Md Niamat [2 ]
Conese, Massimo [1 ]
机构
[1] Univ Foggia, Dept Med & Surg Sci, Lab Expt & Regenerat Med, Foggia, Italy
[2] Univ Foggia, Dept Med & Surg Sci, I-71122 Foggia, Italy
关键词
exosome -like nanoparticles; antitumoral; miRNAs; drug delivery; inflammatory bowel disease; DRUG-DELIVERY-SYSTEMS; TUMOR-ASSOCIATED MACROPHAGES; INFLAMMATORY-BOWEL-DISEASE; NATURAL-PRODUCTS; GENE-EXPRESSION; STEM-CELLS; NANOTECHNOLOGY; ACTIVATION; NANOPARTICLES; EXOSOMES;
D O I
10.1515/med-2020-0160
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Exosomes-like nanoparticles can be released by a variety of plants and vegetables. The relevance of plant-derived nanovesicles (PDNVs) in interspecies communication is derived from their content in biomolecules (lipids, proteins, and miRNAs), absence of toxicity, easy internalization by mammalian cells, as well as for their anti-inflammatory, immunomodulatory, and regenerative properties. Due to these interesting features, we review here their potential application in the treatment of inflammatory bowel disease (IBD), liver diseases, and cancer as well as their potentiality as drug carriers. Current evidence indicate that PDNVs can improve the disease state at the level of intestine in IBD mouse models by affecting inflammation and promoting prohealing effects. While few reports suggest that anticancer effects can be derived from antiproliferative and immunomodulatory properties of PDNVs, other studies have shown that PDNVs can be used as effective delivery systems for small molecule agents and nucleic acids with therapeutic effects (siRNAs, miRNAs, and DNAs). Finally, since PDNVs are characterized by a proven stability in the gastrointestinal tract, they have been considered as promising delivery systems for natural products contained therein and drugs (including nucleic acids) via the oral route.
引用
收藏
页码:1096 / 1122
页数:27
相关论文
共 114 条
[1]   Naturally Occurring Exosome Vesicles as Potential Delivery Vehicle for Bioactive Compounds [J].
Akuma, Precious ;
Okagu, Ogadimma D. ;
Udenigwe, Chibuike C. .
FRONTIERS IN SUSTAINABLE FOOD SYSTEMS, 2019, 3
[2]   Do Plant Cells Secrete Exosomes Derived from Multivesicular Bodies? [J].
An, Qianli ;
van Bel, Aart J. E. ;
Hueckelhoven, Ralph .
PLANT SIGNALING & BEHAVIOR, 2007, 2 (01) :4-7
[3]   Bioavailability of curcumin: Problems and promises [J].
Anand, Preetha ;
Kunnumakkara, Ajaikumar B. ;
Newman, Robert A. ;
Aggarwal, Bharat B. .
MOLECULAR PHARMACEUTICS, 2007, 4 (06) :807-818
[4]   Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis [J].
Arnold, Ludovic ;
Henry, Adeline ;
Poron, Francoise ;
Baba-Amer, Yasmine ;
van Rooijen, Nico ;
Plonquet, Anne ;
Gherardi, Romain K. ;
Chazaud, Benedicte .
JOURNAL OF EXPERIMENTAL MEDICINE, 2007, 204 (05) :1057-1069
[5]   6-Shogaol-Rich Extract from Ginger Up-Regulates the Antioxidant Defense Systems in Cells and Mice [J].
Bak, Min-Ji ;
Ok, Seon ;
Jun, Mira ;
Jeong, Woo-Sik .
MOLECULES, 2012, 17 (07) :8037-8055
[6]   Exosome-like Nanovesicles Isolated from Citrus limon L. Exert Anti-oxidative Effect [J].
Baldini, Nicola ;
Torreggiani, Elena ;
Roncuzzi, Laura ;
Perut, Francesca ;
Zini, Nicoletta ;
Avnet, Sofia .
CURRENT PHARMACEUTICAL BIOTECHNOLOGY, 2018, 19 (11) :877-885
[7]   Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs [J].
Bartel, DP ;
Chen, CZ .
NATURE REVIEWS GENETICS, 2004, 5 (05) :396-400
[8]   Exosomes: an overview of biogenesis, composition and role in ovarian cancer [J].
Beach, Allison ;
Zhang, Huang-Ge ;
Ratajczak, Mariusz Z. ;
Kakar, Sham S. .
JOURNAL OF OVARIAN RESEARCH, 2014, 7
[9]   Nanotechnology-based drug delivery systems and herbal medicines: a review [J].
Bonifacio, Bruna Vidal ;
da Silva, Patricia Bento ;
dos Santos Ramos, Matheus Aparecido ;
Silveira Negri, Kamila Maria ;
Bauab, Tais Maria ;
Chorilli, Marlus .
INTERNATIONAL JOURNAL OF NANOMEDICINE, 2014, 9 :1-15
[10]   Ginseng-derived nanoparticles alter macrophage polarization to inhibit melanoma growth [J].
Cao, Meng ;
Yan, Huaijiang ;
Han, Xuan ;
Weng, Ling ;
Wei, Qin ;
Sun, Xiaoyan ;
Lu, Wuguang ;
Wei, Qingyun ;
Ye, Juan ;
Cai, Xueting ;
Hu, Chunping ;
Yin, Xiaoyang ;
Cao, Peng .
JOURNAL FOR IMMUNOTHERAPY OF CANCER, 2019, 7 (01)