Modeling Heat Transfer Effects In a Solid Oxide Carbon Fuel Cell

被引:2
作者
Armstrong, G. J. [1 ]
Alexander, B. R. [1 ]
Mitchell, R. E. [1 ]
Guer, T. M. [2 ]
机构
[1] Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA
来源
BATTERIES AND ENERGY TECHNOLOGY (GENERAL SESSION) - 222ND ECS MEETING/PRIME 2012: IN HONOR OF JAMES MCBREEN | 2013年 / 50卷 / 45期
关键词
THERMAL CONDUCTIVITIES; DIRECT CONVERSION; DIRECT-OXIDATION; POROUS ROCKS; GASIFICATION; PERFORMANCE; POWER; COAL;
D O I
10.1149/05045.0143ecst
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
A model of a planar geometry solid oxide-based carbon fuel cell is developed. The carbon fuel cell involved a carbon bed in direct contact with the anode, and the oxygen needed for conversion is supplied through the yttria stabilized zirconia (YSZ) solid electrolyte. Using experimentally derived parameters, the model includes mass transport and chemical reaction kinetics inside the carbon bed, anode and cathode reaction kinetics, and ion transport across the YSZ electrolyte. The model also accounts for the effect of heat transfer on temperature distribution inside the anode and cathode compartments, and on the overall cell performance. As expected, inclusion of heat transfer effects provides a realistic predictive tool to anticipate cell performance and efficiency-under exothermic, autothermal, and endothermic operating conditions for the carbon fuel cell.
引用
收藏
页码:143 / 150
页数:8
相关论文
共 50 条
[41]   Modeling, Control, and Integration of a Portable Solid Oxide Fuel Cell System [J].
Adhikari, Puran ;
Abdelrahman, Mohamed .
JOURNAL OF FUEL CELL SCIENCE AND TECHNOLOGY, 2012, 9 (01)
[42]   Modeling solid oxide fuel cell operation: Approaches, techniques and results [J].
Bove, Roberto ;
Ubertini, Stefano .
JOURNAL OF POWER SOURCES, 2006, 159 (01) :543-559
[43]   Dynamic Modeling of a Solid Oxide Fuel Cell System for Control Design [J].
Xi, Handa ;
Varigonda, Subbarao ;
Jing, Buyun .
2010 AMERICAN CONTROL CONFERENCE, 2010, :423-428
[44]   Characteristics of a Solid Oxide Fuel Cell for the Thermodynamic Modeling of Power Plants [J].
Zhuk, A. Z. ;
Ivanov, P. P. .
HIGH TEMPERATURE, 2023, 61 (05) :714-719
[45]   Biomass gasification integrated with a solid oxide fuel cell and Stirling engine [J].
Rokni, Masoud .
ENERGY, 2014, 77 :6-18
[46]   Research Development on Novel Anode of Solid Oxide Direct Carbon Fuel Cells [J].
Wang Hong-Jian ;
Cao Tian-Yu ;
Shi Yi-Xiang ;
Cai Ning-Sheng .
JOURNAL OF INORGANIC MATERIALS, 2014, 29 (07) :681-686
[47]   The impact of physicochemical properties of coal on direct carbon solid oxide fuel cells [J].
Dudek, Magdalena ;
Skrzypkiewicz, Marek ;
Moskala, Norbert ;
Grzywacz, Przemyslaw ;
Sitarz, Maciej ;
Lubarska-Radziejewska, Iwona .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (41) :18872-18883
[48]   Modeling of thermal expansion coefficient of perovskite oxide for solid oxide fuel cell cathode [J].
Heydari, F. ;
Maghsoudipour, A. ;
Alizadeh, M. ;
Khakpour, Z. ;
Javaheri, M. .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2015, 120 (04) :1625-1633
[49]   High efficiency electricity and gas cogeneration through direct carbon solid oxide fuel cell with cotton stalk biochar [J].
Gu, Xiaofeng ;
Yan, Xiaomin ;
Zhou, Mingyang ;
Zou, Gaochang ;
Fan, Zidai ;
Liu, Jiang .
RENEWABLE ENERGY, 2024, 226
[50]   Assessment of biochar as feedstock in a direct carbon solid oxide fuel cell [J].
Konsolakis, Michalis ;
Kaklidis, Nikolaos ;
Marnellos, George E. ;
Zaharaki, Dimitra ;
Komnitsas, Kostas .
RSC ADVANCES, 2015, 5 (90) :73399-73409