Modeling Heat Transfer Effects In a Solid Oxide Carbon Fuel Cell

被引:2
作者
Armstrong, G. J. [1 ]
Alexander, B. R. [1 ]
Mitchell, R. E. [1 ]
Guer, T. M. [2 ]
机构
[1] Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA
来源
BATTERIES AND ENERGY TECHNOLOGY (GENERAL SESSION) - 222ND ECS MEETING/PRIME 2012: IN HONOR OF JAMES MCBREEN | 2013年 / 50卷 / 45期
关键词
THERMAL CONDUCTIVITIES; DIRECT CONVERSION; DIRECT-OXIDATION; POROUS ROCKS; GASIFICATION; PERFORMANCE; POWER; COAL;
D O I
10.1149/05045.0143ecst
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
A model of a planar geometry solid oxide-based carbon fuel cell is developed. The carbon fuel cell involved a carbon bed in direct contact with the anode, and the oxygen needed for conversion is supplied through the yttria stabilized zirconia (YSZ) solid electrolyte. Using experimentally derived parameters, the model includes mass transport and chemical reaction kinetics inside the carbon bed, anode and cathode reaction kinetics, and ion transport across the YSZ electrolyte. The model also accounts for the effect of heat transfer on temperature distribution inside the anode and cathode compartments, and on the overall cell performance. As expected, inclusion of heat transfer effects provides a realistic predictive tool to anticipate cell performance and efficiency-under exothermic, autothermal, and endothermic operating conditions for the carbon fuel cell.
引用
收藏
页码:143 / 150
页数:8
相关论文
共 50 条
[21]   Numerical Modeling of Electrolyte-Supported Button Solid Oxide Direct Carbon Fuel Cell Based on Boudouard Reaction [J].
Wang, Junzhe ;
Zhou, Anning ;
Song, Zongxing ;
Liu, Guoyang ;
Qin, Sicheng ;
Wang, Dan .
RUSSIAN JOURNAL OF ELECTROCHEMISTRY, 2024, 60 (09) :737-748
[22]   Evaluation of steady-state characteristics for solid oxide carbon fuel cell short-stacks [J].
Mushtaq, Usman ;
Mehran, Muhammad Taqi ;
Kim, Sun-Kyoung ;
Lim, Tak-Hyoung ;
Naqvi, Syed Asad Ali ;
Lee, Jong -Won ;
Lee, Seung-Bok ;
Park, Seok-Joo ;
Song, Rak-Hyun .
APPLIED ENERGY, 2017, 187 :886-898
[23]   Mechanism for carbon direct electrochemical reactions in a solid oxide electrolyte direct carbon fuel cell [J].
Li, Chen ;
Shi, Yixiang ;
Cai, Ningsheng .
JOURNAL OF POWER SOURCES, 2011, 196 (02) :754-763
[24]   Altitude Effects on Solid Oxide Fuel Cell Performance [J].
Chakravarthula, Venkata Adithya ;
Roberts, Rory A. ;
Wolff, Mitch .
14TH INTERNATIONAL ENERGY CONVERSION ENGINEERING CONFERENCE, 2016,
[25]   Heat Modeling and Material Development of Mg-Based Nanomaterials Combined with Solid Oxide Fuel Cell for Stationary Energy Storage [J].
Shao, Huaiyu .
ENERGIES, 2017, 10 (11)
[26]   Carbon monoxide-fueled solid oxide fuel cell [J].
Homel, Michael ;
Gur, Turgut M. ;
Koh, Joon Ho ;
Virkar, Anil V. .
JOURNAL OF POWER SOURCES, 2010, 195 (19) :6367-6372
[27]   Performance improvement of a direct carbon solid oxide fuel cell through integrating an Otto heat engine [J].
Xu, Haoran ;
Chen, Bin ;
Tan, Peng ;
Zhang, Houcheng ;
Yuan, Jinliang ;
Irvine, John T. S. ;
Ni, Meng .
ENERGY CONVERSION AND MANAGEMENT, 2018, 165 :761-770
[28]   Modeling Carbon Monoxide Direct Oxidation in Solid Oxide Fuel Cells [J].
Andreassi, Luca ;
Toro, Claudia ;
Ubertini, Stefano .
JOURNAL OF FUEL CELL SCIENCE AND TECHNOLOGY, 2009, 6 (02) :0213071-02130715
[29]   Lattice Boltzmann modeling of carbon deposition in porous anode of a solid oxide fuel cell with internal reforming [J].
Xu, Han ;
Dang, Zheng .
APPLIED ENERGY, 2016, 178 :294-307
[30]   Thermal Modeling and Simulation of an Integrated Solid Oxide Fuel Cell and Charcoal Gasification System [J].
Colpan, C. Ozgur ;
Yoo, Yeong ;
Dincer, Ibrahim ;
Hamdullahpur, Feridun .
ENVIRONMENTAL PROGRESS & SUSTAINABLE ENERGY, 2009, 28 (03) :380-385