Modeling Heat Transfer Effects In a Solid Oxide Carbon Fuel Cell

被引:2
作者
Armstrong, G. J. [1 ]
Alexander, B. R. [1 ]
Mitchell, R. E. [1 ]
Guer, T. M. [2 ]
机构
[1] Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA
来源
BATTERIES AND ENERGY TECHNOLOGY (GENERAL SESSION) - 222ND ECS MEETING/PRIME 2012: IN HONOR OF JAMES MCBREEN | 2013年 / 50卷 / 45期
关键词
THERMAL CONDUCTIVITIES; DIRECT CONVERSION; DIRECT-OXIDATION; POROUS ROCKS; GASIFICATION; PERFORMANCE; POWER; COAL;
D O I
10.1149/05045.0143ecst
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
A model of a planar geometry solid oxide-based carbon fuel cell is developed. The carbon fuel cell involved a carbon bed in direct contact with the anode, and the oxygen needed for conversion is supplied through the yttria stabilized zirconia (YSZ) solid electrolyte. Using experimentally derived parameters, the model includes mass transport and chemical reaction kinetics inside the carbon bed, anode and cathode reaction kinetics, and ion transport across the YSZ electrolyte. The model also accounts for the effect of heat transfer on temperature distribution inside the anode and cathode compartments, and on the overall cell performance. As expected, inclusion of heat transfer effects provides a realistic predictive tool to anticipate cell performance and efficiency-under exothermic, autothermal, and endothermic operating conditions for the carbon fuel cell.
引用
收藏
页码:143 / 150
页数:8
相关论文
共 50 条
[11]   Recent progress in direct carbon solid oxide fuel cell: Advanced anode catalysts, diversified carbon fuels, and heat management [J].
Yu, Fangyong ;
Han, Tingting ;
Wang, Zhigang ;
Xie, Yujiao ;
Wu, Yuxi ;
Jin, Yun ;
Yang, Naitao ;
Xiao, Jie ;
Kawi, Sibudjing .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (05) :4283-4300
[12]   Impedance Modeling of Solid Oxide Fuel Cell Cathodes [J].
Mortensen, J. E. ;
Sogaard, M. ;
Jacobsen, T. .
IONIC AND MIXED CONDUCTING CERAMICS 7, 2010, 28 (11) :17-38
[13]   Single solid oxide fuel cell modeling and optimization [J].
Wen, H. ;
Ordonez, J. C. ;
Vargas, J. V. C. .
JOURNAL OF POWER SOURCES, 2011, 196 (18) :7519-7532
[14]   AN ANALYSIS OF HEAT TRANSFER PROCESSES IN AN INTERNAL INDIRECT REFORMING TYPE SOLID OXIDE FUEL CELL [J].
Brus, Grzegorz ;
Kolenda, Zygmunt ;
Kimijima, Shinji ;
Szmyd, Janusz S. .
PROCEEDINGS OF THE ASME INTERNATIONAL HEAT TRANSFER CONFERENCE - 2010, VOL 5: FUEL CELLS, GAS TURBINES, HEAT PIPES, JET IMPINGEMENT, RADIATION, 2010, :71-80
[15]   Numerical investigation of flow/heat transfer and structural stress in a planar solid oxide fuel cell [J].
Kim, Young Jin ;
Lee, Min Chul .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (29) :18504-18513
[16]   Experimental and Modeling Study of Biomass Conversion in a Solid Carbon Fuel Cell [J].
Alexander, B. R. ;
Mitchell, R. E. ;
Guer, T. M. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2012, 159 (03) :B347-B354
[17]   Analytical modeling of polarizations in a solid oxide fuel cell using biomass syngas product as fuel [J].
Aloui, Thameur ;
Halouani, Kamel .
APPLIED THERMAL ENGINEERING, 2007, 27 (04) :731-737
[18]   Anodes for Carbon-Fueled Solid Oxide Fuel Cells [J].
Zhou, Wei ;
Jiao, Yong ;
Li, Si-Dian ;
Shao, Zongping .
CHEMELECTROCHEM, 2016, 3 (02) :193-203
[19]   A MODELING STUDY OF POROUS ELECTRODE PROPERTY EFFECTS ON SOLID OXIDE FUEL CELL PERFOREMANCE [J].
Xie, Y. ;
Xue, X. .
PROCEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE ON FUEL CELL SCIENCE, ENGINEERING, AND TECHNOLOGY, 2009, :265-272
[20]   Experimental characterization and elementary reaction modeling of solid oxide electrolyte direct carbon fuel cell [J].
Yu, Xiankai ;
Shi, Yixiang ;
Wang, Hongjian ;
Cai, Ningsheng ;
Li, Chen ;
Tomov, Rumen I. ;
Hanna, Jeffrey ;
Glowacki, Bartek A. ;
Ghoniem, Ahmed F. .
JOURNAL OF POWER SOURCES, 2013, 243 :159-171