partial derivative-problem and Cauchy matrix for the mKdV equation with self-consistent sources

被引:5
作者
Zhu, Junyi [1 ]
Zhou, Dewen [2 ]
Geng, Xianguo [1 ]
机构
[1] Zhengzhou Univ, Dept Math, Zhengzhou 450001, Henan, Peoples R China
[2] Zhongyuan Univ Technol, Coll Sci, Zhengzhou 451191, Peoples R China
基金
中国国家自然科学基金;
关键词
partial derivative-problem; Cauchy matrix; mKdV equation; self-consistent sources; MODIFIED KDV EQUATION; PULSE-PROPAGATION; INTEGRATION; SOLITONS; SCATTERING; HIERARCHY; SYSTEM; WAVES;
D O I
10.1088/0031-8949/89/6/065201
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The modified Korteweg-de Vries (mKdV) and Maxwell-Bloch system is studied by using the dressing method based on the local 2 x 2 matrix. partial derivative-problem. By virtue of a singular dispersion relation, we derive the present mKdV equation with self-consistent sources which change the velocities of the solitons. The explicit solutions, including the bright and dark type N-soliton solutions due to different forms of the spectral transform matrix, are given by virtue of the properties of the Cauchy matrix.
引用
收藏
页数:7
相关论文
共 28 条
[1]   COHERENT PULSE-PROPAGATION, A DISPERSIVE, IRREVERSIBLE PHENOMENON [J].
ABLOWITZ, MJ ;
KAUP, DJ ;
NEWELL, AC .
JOURNAL OF MATHEMATICAL PHYSICS, 1974, 15 (11) :1852-1858
[2]   LINEAR SPECTRAL PROBLEMS, NON-LINEAR EQUATIONS AND THE DELTA-BAR-METHOD [J].
BEALS, R ;
COIFMAN, RR .
INVERSE PROBLEMS, 1989, 5 (02) :87-130
[3]   NONLINEAR RESONANT SCATTERING AND PLASMA INSTABILITY - AN INTEGRABLE MODEL [J].
CLAUDE, C ;
LATIFI, A ;
LEON, J .
JOURNAL OF MATHEMATICAL PHYSICS, 1991, 32 (12) :3321-3330
[4]  
Doktorov E.V, 2007, A Dressing Method in Mathematical Physics
[5]   OPTICAL SOLITONS IN MEDIA WITH RESONANT AND NON-RESONANT SELF-FOCUSING NONLINEARITIES [J].
DOKTOROV, EV ;
VLASOV, RA .
OPTICA ACTA, 1983, 30 (02) :223-232
[6]   The higher-order KdV equation with a source and nonlinear superposition formula [J].
Hu, XB .
CHAOS SOLITONS & FRACTALS, 1996, 7 (02) :211-215
[7]  
Huang N-N., 1996, THEORY SOLITONS METH
[8]   WEAK NON-LINEAR HYDROMAGNETIC WAVES IN A COLD COLLISION-FREE PLASMA [J].
KAKUTANI, T ;
ONO, H .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1969, 26 (05) :1305-&
[9]   INTEGRABLE PONDEROMOTIVE SYSTEM - CAVITONS ARE SOLITONS [J].
KAUP, DJ .
PHYSICAL REVIEW LETTERS, 1987, 59 (18) :2063-2066