Enhancing the Photoelectrochemical Water Oxidation Reaction of BiVO4 Photoanode by Employing Carbon Spheres as Electron Reservoirs

被引:68
|
作者
Wang, Minrui [1 ]
Wang, Zeyan [1 ]
Zhang, Bo [2 ]
Jiang, Weiyi [1 ]
Bao, Xiaolei [1 ]
Cheng, Hefeng [1 ]
Zheng, Zhaoke [1 ]
Wang, Peng [1 ]
Liu, Yuanyuan [1 ]
Whangbo, Myung-Hwan [1 ,3 ,4 ]
Li, Yingjie [5 ]
Dai, Ying [6 ]
Huang, Baibiao [1 ]
机构
[1] Shandong Univ, State Key Lab Crystal Mat, Jinan 250100, Peoples R China
[2] Chinese Acad Sci, Shanghai Inst Ceram, Shanghai 201899, Peoples R China
[3] North Carolina State Univ, Dept Chem, Raleigh, NC 27695 USA
[4] Chinese Acad Sci, Fujian Inst Res Struct Matter FJIRSM, State Key Lab Struct Chem, Fuzhou 350002, Peoples R China
[5] Shandong Univ, Sch Energy & Power Engn, Jinan 250061, Peoples R China
[6] Shandong Univ, Sch Phys, Jinan 250100, Peoples R China
来源
ACS CATALYSIS | 2020年 / 10卷 / 21期
基金
中国国家自然科学基金;
关键词
photoelectrochemical; water oxidation; BiVO4; photoanode; carbon spheres; electrons reservoirs;
D O I
10.1021/acscatal.0c03671
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The rate-determining step of the photoelectrochemical (PEC) water splitting is the water oxidation reaction at the photoanode, which is 4 orders of magnitude slower than the water reduction reaction at the photocathode. In a conventional process to accelerate the water oxidation, oxygen evolution cocatalysts (OECs) are usually used on the surface of a photoanode. As an alternative strategy, we considered employing a composite photoanode made up of a semiconductor and carbon spheres, for it is expected that the photogenerated electrons on the semiconductor particles can be captured by the carbon spheres as electron reservoirs and leave the photogenerated holes on the surface of the semiconductor particles, which promotes the effective separation of photogenerated electrons and holes. More importantly, the holes accumulated in the valence band accelerate the water oxidation reaction rate with the rapid release of electrons stored on the carbon sphere. Therefore, the composite photoanode achieves a higher photocurrent at a lower applied bias. We provide a proof of concept for this strategy by preparing a composite photoanode by combining bismuth vanadium oxide BiVO4 with carbon spheres and find that the resulting photoanode displays a remarkable enhancement in the rate of the photoanode water oxidation.
引用
收藏
页码:13031 / 13039
页数:9
相关论文
共 50 条
  • [31] IMPROVEMENT THE BIVO4 PHOTOANODE FABRICATED FOR WATER OXIDATION BY ELECTRODEPOSITION TECHNIQUE
    Kiama, Nuanlaor
    Ponchio, Chatchai
    INTERNATIONAL JOURNAL OF GEOMATE, 2018, 14 (46): : 77 - 82
  • [32] Boosting Charge Transport in BiVO4 Photoanode for Solar Water Oxidation
    Lu, Yuan
    Yang, Yilong
    Fan, Xinyi
    Li, Yiqun
    Zhou, Dinghua
    Cai, Bo
    Wang, Luyang
    Fan, Ke
    Zhang, Kan
    ADVANCED MATERIALS, 2022, 34 (08)
  • [33] Construction and photoelectrochemical water oxidation performance of BiVO4/ZnFe2O4 homotypic heterojunction photoanode
    Fan Meng-Meng
    Wen Xiao-Jiang
    Tao Zi-Yang
    Zhao Qiang
    Li Jin-Ping
    Liu Guang
    CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2023, 39 (01) : 23 - 31
  • [34] Ultrathin g-C3N4/Mo:BiVO4 photoanode for enhanced photoelectrochemical water oxidation
    Zeng, Guihua
    Wang, Xiaojun
    Yu, Xiang
    Guo, Jia
    Zhu, Yi
    Zhang, Yuanming
    JOURNAL OF POWER SOURCES, 2019, 444
  • [35] BiVO4 photoanode decorated with cobalt-manganese layered double hydroxides for enhanced photoelectrochemical water oxidation
    Zhao, Fei
    Li, Na
    Wu, Yun
    Wen, Xiaojiang
    Zhao, Qiang
    Liu, Guang
    Li, Jinping
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (56) : 31902 - 31912
  • [36] An ultra-thin NiOOH layer loading on BiVO4 photoanode for highly efficient photoelectrochemical water oxidation
    Luo, Heng
    Liu, Changhai
    Xu, Yu
    Zhang, Chao
    Wang, Wenchang
    Chen, Zhidong
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (57) : 30160 - 30170
  • [37] Unveiling the effect of the structural transformation of CoZn-MOF on BiVO4 photoanode for efficient photoelectrochemical water oxidation
    Feng, Chenchen
    Fu, Houyu
    Shao, Xiaojiao
    Zhan, Faqi
    Zhang, Yiming
    Wan, Lei
    Wang, Wei
    Zhou, Qi
    Liu, Maocheng
    Cheng, Xiang
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2024, 664 : 838 - 847
  • [38] Ultrasonic-assisted preparation of a pinhole-free BiVO4 photoanode for enhanced photoelectrochemical water oxidation
    Park, Gisang
    Park, Joon Yong
    Seo, Jong Hyeok
    Oh, Kyung Hee
    Ma, Ahyeon
    Nam, Ki Min
    CHEMICAL COMMUNICATIONS, 2018, 54 (44) : 5570 - 5573
  • [39] Dual Modification of a BiVO4 Photoanode for Enhanced Photoelectrochemical Performance
    Gao, Lili
    Li, Feng
    Hu, Haiguo
    Long, Xuefeng
    Xu, Na
    Hu, Yiping
    Wei, Shenqi
    Wang, Chenglong
    Ma, Jiantai
    Jin, Jun
    CHEMSUSCHEM, 2018, 11 (15) : 2502 - 2509
  • [40] Photoelectrochemical performance of W-doped BiVO4 photoanode
    Zhao, Lei
    Wei, Jindong
    Li, Yanting
    Han, Chun
    Pan, Lin
    Liu, Zhifeng
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2019, 30 (24) : 21425 - 21434