Enhancing the Photoelectrochemical Water Oxidation Reaction of BiVO4 Photoanode by Employing Carbon Spheres as Electron Reservoirs

被引:68
|
作者
Wang, Minrui [1 ]
Wang, Zeyan [1 ]
Zhang, Bo [2 ]
Jiang, Weiyi [1 ]
Bao, Xiaolei [1 ]
Cheng, Hefeng [1 ]
Zheng, Zhaoke [1 ]
Wang, Peng [1 ]
Liu, Yuanyuan [1 ]
Whangbo, Myung-Hwan [1 ,3 ,4 ]
Li, Yingjie [5 ]
Dai, Ying [6 ]
Huang, Baibiao [1 ]
机构
[1] Shandong Univ, State Key Lab Crystal Mat, Jinan 250100, Peoples R China
[2] Chinese Acad Sci, Shanghai Inst Ceram, Shanghai 201899, Peoples R China
[3] North Carolina State Univ, Dept Chem, Raleigh, NC 27695 USA
[4] Chinese Acad Sci, Fujian Inst Res Struct Matter FJIRSM, State Key Lab Struct Chem, Fuzhou 350002, Peoples R China
[5] Shandong Univ, Sch Energy & Power Engn, Jinan 250061, Peoples R China
[6] Shandong Univ, Sch Phys, Jinan 250100, Peoples R China
来源
ACS CATALYSIS | 2020年 / 10卷 / 21期
基金
中国国家自然科学基金;
关键词
photoelectrochemical; water oxidation; BiVO4; photoanode; carbon spheres; electrons reservoirs;
D O I
10.1021/acscatal.0c03671
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The rate-determining step of the photoelectrochemical (PEC) water splitting is the water oxidation reaction at the photoanode, which is 4 orders of magnitude slower than the water reduction reaction at the photocathode. In a conventional process to accelerate the water oxidation, oxygen evolution cocatalysts (OECs) are usually used on the surface of a photoanode. As an alternative strategy, we considered employing a composite photoanode made up of a semiconductor and carbon spheres, for it is expected that the photogenerated electrons on the semiconductor particles can be captured by the carbon spheres as electron reservoirs and leave the photogenerated holes on the surface of the semiconductor particles, which promotes the effective separation of photogenerated electrons and holes. More importantly, the holes accumulated in the valence band accelerate the water oxidation reaction rate with the rapid release of electrons stored on the carbon sphere. Therefore, the composite photoanode achieves a higher photocurrent at a lower applied bias. We provide a proof of concept for this strategy by preparing a composite photoanode by combining bismuth vanadium oxide BiVO4 with carbon spheres and find that the resulting photoanode displays a remarkable enhancement in the rate of the photoanode water oxidation.
引用
收藏
页码:13031 / 13039
页数:9
相关论文
共 50 条
  • [31] Enhanced Photoelectrochemical Water Oxidation Performance by Fluorine Incorporation in BiVO4 and Mo:BiVO4 Thin Film Photoanodes
    Rohloff, Martin
    Anke, Bjoern
    Kasian, Olga
    Zhang, Siyuan
    Lerch, Martin
    Scheu, Christina
    Fischer, Anna
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (18) : 16430 - 16442
  • [32] Al-O bridged NiFeOx/BiVO4 photoanode for exceptional photoelectrochemical water splitting
    Wang, Lina
    Wang, Hairu
    Bu, Qian
    Mei, Qiong
    Zhong, Junbo
    Bai, Bo
    Wang, Qizhao
    CHINESE CHEMICAL LETTERS, 2025, 36 (04)
  • [33] NdCo3 Molecular Catalyst Coupled with a BiVO4 Photoanode for Photoelectrochemical Water Splitting
    Gao, Guodong
    Chen, Rong
    Wang, Qingjie
    Cheung, Daniel Wun Fung
    Zhao, Jia
    Luo, Jingshan
    ACS APPLIED ENERGY MATERIALS, 2023, 6 (07) : 4027 - 4034
  • [34] Enhanced photoelectrochemical water splitting using a cobalt-sulfide-decorated BiVO4 photoanode
    Zhou, Zhiming
    Chen, Jinjin
    Wang, Qinlong
    Jiang, Xingxing
    Shen, Yan
    CHINESE JOURNAL OF CATALYSIS, 2022, 43 (02) : 433 - 441
  • [35] Photoelectrochemical Water Splitting Over Decahedron Shaped BiVO4 Photoanode by Tuning the Experimental Parameters
    Pandiaraj, A.
    Ibrahim, M. Mohmed
    Jothivenkatachalam, K.
    Kavinkumar, V.
    JOURNAL OF CLUSTER SCIENCE, 2023, 34 (01) : 557 - 564
  • [36] Enhanced photoelectrochemical water splitting using a cobalt-sulfide-decorated BiVO4 photoanode
    Zhou Z.
    Chen J.
    Wang Q.
    Jiang X.
    Shen Y.
    Chinese Journal of Catalysis, 2022, 43 (02): : 433 - 441
  • [37] Photoelectrochemical Water Splitting Over Decahedron Shaped BiVO4 Photoanode by Tuning the Experimental Parameters
    A. Pandiaraj
    M. Mohmed Ibrahim
    K. Jothivenkatachalam
    V. Kavinkumar
    Journal of Cluster Science, 2023, 34 : 557 - 564
  • [38] Simultaneously Efficient Light Absorption and Charge Separation in WO3/BiVO4 Core/Shell Nanowire Photoanode for Photoelectrochemical Water Oxidation
    Rao, Pratap M.
    Cai, Lili
    Liu, Chong
    Cho, In Sun
    Lee, Chi Hwan
    Weisse, Jeffrey M.
    Yang, Peidong
    Zheng, Xiaolin
    NANO LETTERS, 2014, 14 (02) : 1099 - 1105
  • [39] Rational design of W-doped BiVO4 photoanode coupled with FeOOH for highly efficient photoelectrochemical catalyzing water oxidation
    Kubendhiran, Subbiramaniyan
    Chung, Ren-Jei
    Yougbare, Sibidou
    Lin, Lu-Yin
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (63) : 27012 - 27022
  • [40] Photocatalytic H2O2 generation assisted photoelectrochemical water oxidation for enhanced BiVO4 photoanode performance
    Singh, Aditya
    Sarma, Satirtha K.
    Karmakar, Sujay
    Basu, Suddhasatwa
    CHEMICAL ENGINEERING JOURNAL ADVANCES, 2021, 8