Enhancing the Photoelectrochemical Water Oxidation Reaction of BiVO4 Photoanode by Employing Carbon Spheres as Electron Reservoirs

被引:68
|
作者
Wang, Minrui [1 ]
Wang, Zeyan [1 ]
Zhang, Bo [2 ]
Jiang, Weiyi [1 ]
Bao, Xiaolei [1 ]
Cheng, Hefeng [1 ]
Zheng, Zhaoke [1 ]
Wang, Peng [1 ]
Liu, Yuanyuan [1 ]
Whangbo, Myung-Hwan [1 ,3 ,4 ]
Li, Yingjie [5 ]
Dai, Ying [6 ]
Huang, Baibiao [1 ]
机构
[1] Shandong Univ, State Key Lab Crystal Mat, Jinan 250100, Peoples R China
[2] Chinese Acad Sci, Shanghai Inst Ceram, Shanghai 201899, Peoples R China
[3] North Carolina State Univ, Dept Chem, Raleigh, NC 27695 USA
[4] Chinese Acad Sci, Fujian Inst Res Struct Matter FJIRSM, State Key Lab Struct Chem, Fuzhou 350002, Peoples R China
[5] Shandong Univ, Sch Energy & Power Engn, Jinan 250061, Peoples R China
[6] Shandong Univ, Sch Phys, Jinan 250100, Peoples R China
来源
ACS CATALYSIS | 2020年 / 10卷 / 21期
基金
中国国家自然科学基金;
关键词
photoelectrochemical; water oxidation; BiVO4; photoanode; carbon spheres; electrons reservoirs;
D O I
10.1021/acscatal.0c03671
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The rate-determining step of the photoelectrochemical (PEC) water splitting is the water oxidation reaction at the photoanode, which is 4 orders of magnitude slower than the water reduction reaction at the photocathode. In a conventional process to accelerate the water oxidation, oxygen evolution cocatalysts (OECs) are usually used on the surface of a photoanode. As an alternative strategy, we considered employing a composite photoanode made up of a semiconductor and carbon spheres, for it is expected that the photogenerated electrons on the semiconductor particles can be captured by the carbon spheres as electron reservoirs and leave the photogenerated holes on the surface of the semiconductor particles, which promotes the effective separation of photogenerated electrons and holes. More importantly, the holes accumulated in the valence band accelerate the water oxidation reaction rate with the rapid release of electrons stored on the carbon sphere. Therefore, the composite photoanode achieves a higher photocurrent at a lower applied bias. We provide a proof of concept for this strategy by preparing a composite photoanode by combining bismuth vanadium oxide BiVO4 with carbon spheres and find that the resulting photoanode displays a remarkable enhancement in the rate of the photoanode water oxidation.
引用
收藏
页码:13031 / 13039
页数:9
相关论文
共 50 条
  • [21] An ultra-thin NiOOH layer loading on BiVO4 photoanode for highly efficient photoelectrochemical water oxidation
    Luo, Heng
    Liu, Changhai
    Xu, Yu
    Zhang, Chao
    Wang, Wenchang
    Chen, Zhidong
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (57) : 30160 - 30170
  • [22] FeOOH/rGO/BiVO4 Photoanode for Highly Enhanced Photoelectrochemical Water Splitting Performance
    Zeng, Guihua
    Hou, Liqiong
    Zhang, Jialing
    Zhu, Jiaqian
    Yu, Xiang
    Fu, Xionghui
    Zhu, Yi
    Zhang, Yuanming
    CHEMCATCHEM, 2020, 12 (14) : 3769 - 3775
  • [23] Enhanced performance of NiF2/BiVO4 photoanode for photoelectrochemical water splitting
    Zhao, Ziwei
    Chen, Kaiyi
    Huang, Jingwei
    Wang, Lei
    She, Houde
    Wang, Qizhao
    FRONTIERS IN ENERGY, 2021, 15 (03) : 760 - 771
  • [24] Recent advances in elaborate interface regulation of BiVO4 photoanode for photoelectrochemical water splitting
    Wang, Liming
    Zhang, Yaping
    Li, Weibing
    Wang, Lei
    MATERIALS REPORTS: ENERGY, 2023, 3 (04):
  • [25] NiFe layered double-hydroxide nanoparticles for efficiently enhancing performance of BiVO4 photoanode in photoelectrochemical water splitting
    Wang, Qizhao
    Niu, Tengjiao
    Wang, Lei
    Huang, Jingwei
    She, Houde
    CHINESE JOURNAL OF CATALYSIS, 2018, 39 (04) : 613 - 618
  • [26] Photoelectrochemical Oxidation of Glycerol to Dihydroxyacetone Over an Acid-Resistant Ta:BiVO4 Photoanode
    Tateno, Hiroyuki
    Chen, Shih-Yuan
    Miseki, Yugo
    Nakajima, Tomohiko
    Mochizuki, Takehisa
    Sayama, Kazuhiro
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2022, 10 (23) : 7586 - 7594
  • [27] Rational Design of Ternary Composite Photoanode BiVO4/PW12/NiTsPc for Improved Photoelectrochemical Water Oxidation
    Xi, Lu
    Zhang, Qian
    Sun, Zhixia
    Song, Chunli
    Xu, Lin
    CHEMELECTROCHEM, 2018, 5 (18): : 2534 - 2541
  • [28] WO3 layer sensitized with BiVO4 and MIL-101(Fe) as photoanode for photoelectrochemical water oxidation
    Sima, M.
    Vasile, E.
    Preda, N.
    Matei, E.
    Sima, A.
    Negrila, C.
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2023, 181
  • [29] A Cobalt-Based Metal-Organic Framework as Cocatalyst on BiVO4 Photoanode for Enhanced Photoelectrochemical Water Oxidation
    Zhang, Wang
    Li, Rui
    Zhao, Xin
    Chen, Zhong
    Law, Adrian Wing-Keung
    Zhou, Kun
    CHEMSUSCHEM, 2018, 11 (16) : 2710 - 2716
  • [30] Amorphous type FeOOH modified defective BiVO4 photoanodes for photoelectrochemical water oxidation
    Lu, Xinyu
    Ye, Kai-hang
    Zhang, Siqi
    Zhang, Jingnan
    Yang, Jindong
    Huang, Yongchao
    Ji, Hongbing
    CHEMICAL ENGINEERING JOURNAL, 2022, 428