Probabilistic intra-retinal layer segmentation in 3-D OCT images using global shape regularization

被引:44
作者
Rathke, Fabian [1 ]
Schmidt, Stefan [2 ,3 ]
Schnoerr, Christoph [1 ,2 ]
机构
[1] Heidelberg Univ, Image & Pattern Anal Grp IPA, D-69126 Heidelberg, Germany
[2] Heidelberg Univ, Heidelberg Collaboratory Image Proc HCI, D-69126 Heidelberg, Germany
[3] Heidelberg Engn GmbH, D-69121 Heidelberg, Germany
关键词
Statistical shape model; Retinal layer segmentation; Pathology detection; Optical coherence tomography; OPTICAL COHERENCE TOMOGRAPHY; GLAUCOMA; THICKNESS;
D O I
10.1016/j.media.2014.03.004
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
With the introduction of spectral-domain optical coherence tomography (OCT), resulting in a significant increase in acquisition speed, the fast and accurate segmentation of 3-D OCT scans has become evermore important. This paper presents a novel probabilistic approach, that models the appearance of retinal layers as well as the global shape variations of layer boundaries. Given an OCT scan, the full posterior distribution over segmentations is approximately inferred using a variational method enabling efficient probabilistic inference in terms of computationally tractable model components: Segmenting a full 3-D volume takes around a minute. Accurate segmentations demonstrate the benefit of using global shape regularization: We segmented 35 fovea-centered 3-D volumes with an average unsigned error of 2.46 +/- 0.22 mu m as well as 80 normal and 66 glaucomatous 2-D circular scans with errors of 2.92 +/- 0.5 mu m and 4.09 +/- 0.98 mu m respectively. Furthermore, we utilized the inferred posterior distribution to rate the quality of the segmentation, point out potentially erroneous regions and discriminate normal from pathological scans. No pre- or postprocessing was required and we used the same set of parameters for all data sets, underlining the robustness and out-of-the-box nature of our approach. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:781 / 794
页数:14
相关论文
共 37 条
[1]   Automatic segmentation in three-dimensional analysis of fibrovascular pigmentepithelial detachment using high-definition optical coherence tomography [J].
Ahlers, C. ;
Simader, C. ;
Geitzenauer, W. ;
Stock, G. ;
Stetson, P. ;
Dastmalchi, S. ;
Schmidt-Erfurth, U. .
BRITISH JOURNAL OF OPHTHALMOLOGY, 2008, 92 (02) :197-203
[2]  
[Anonymous], 1991, ELEMENTS INFORM THEO, DOI [DOI 10.1002/0471200611, 10.1002/0471200611]
[3]  
[Anonymous], 2006, Pattern recognition and machine learning
[4]   Automated 3-D Segmentation of Intraretinal Layers from Optic Nerve Head Optical Coherence Tomography Images [J].
Antony, Bhavna J. ;
Abramoff, Michael D. ;
Lee, Kyungmoo ;
Sonkova, Pavlina ;
Gupta, Priya ;
Kwon, Young ;
Niemeijer, Meindert ;
Hu, Zhihong ;
Garvin, Mona K. .
MEDICAL IMAGING 2010: BIOMEDICAL APPLICATIONS IN MOLECULAR, STRUCTURAL, AND FUNCTIONAL IMAGING, 2010, 7626
[5]  
Attias H, 2000, ADV NEUR IN, V12, P209
[6]   Towards quantitative analysis of retinal features in optical coherence tomography [J].
Baroni, Maurizio ;
Fortunato, Pina ;
La Torre, Agostino .
MEDICAL ENGINEERING & PHYSICS, 2007, 29 (04) :432-441
[7]  
Bowd C, 2001, INVEST OPHTH VIS SCI, V42, P1993
[8]   Sensitivity and Specificity of Time-Domain versus Spectral-Domain Optical Coherence Tomography in Diagnosing Early to Moderate Glaucoma [J].
Chang, Robert T. ;
Knight, O'Rese J. ;
Feuer, William J. ;
Budenz, Donald L. .
OPHTHALMOLOGY, 2009, 116 (12) :2294-2299
[9]   Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography [J].
de Boer, JF ;
Cense, B ;
Park, BH ;
Pierce, MC ;
Tearney, GJ ;
Bouma, BE .
OPTICS LETTERS, 2003, 28 (21) :2067-2069
[10]   State-of-the-art retinal optical coherence tomography [J].
Drexler, Wolfgang ;
Fujimoto, James G. .
PROGRESS IN RETINAL AND EYE RESEARCH, 2008, 27 (01) :45-88