Derivation of the multisymplectic Crank-Nicolson scheme for the nonlinear Schrodinger equation

被引:1
|
作者
Cai, Wenjun [1 ]
Wang, Yushun [1 ]
Song, Yongzhong [1 ]
机构
[1] Nanjing Normal Univ, Sch Math & Sci, Jiangsu Prov Key Lab NSLSCS, Nanjing 210023, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Multisymplectic integrator; Variational integrator; Crank-Nicolson scheme; Nonlinear Schrodinger equation; Conservation law; SYMPLECTIC METHODS; INTEGRATORS;
D O I
10.1016/j.cpc.2014.05.011
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The Crank-Nicolson scheme as well as its modified schemes is widely used in numerical simulations for the nonlinear Schrodinger equation. In this paper, we prove the multisymplecticity and symplecticity of this scheme. Firstly, we reconstruct the scheme by the concatenating method and present the corresponding discrete multisymplectic conservation law. Based on the discrete variational principle, we derive a new variational integrator which is equivalent to the Crank-Nicolson scheme. Therefore, we prove the multisymplecticity again from the Lagrangian framework. Symplecticity comes from the proper discrete Hamiltonian structure and symplectic integration in time. We also analyze this scheme on stability and convergence including the discrete mass conservation law. Numerical experiments are presented to verify the efficiency and invariant-preserving property of this scheme. Comparisons with the multisymplectic Preissmann scheme are made to show the superiority of this scheme. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:2403 / 2411
页数:9
相关论文
共 50 条
  • [31] A Crank-Nicolson scheme for the Landau-Lifshitz equation without damping
    Jeong, Darae
    Kim, Junseok
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 234 (02) : 613 - 623
  • [32] NUMERICAL ANALYSIS OF CRANK-NICOLSON SCHEME FOR THE ALLEN-CAHN EQUATION
    Chu, Qianqian
    Jin, Guanghui
    Shen, Jihong
    Jin, Yuanfeng
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2021, 39 (05): : 766 - 776
  • [33] Crank-Nicolson/finite element approximation for the Schrodinger equation in the de Sitter spacetime
    Selvitopi, Harun
    Zaky, Mahmoud A.
    Hendy, Ahmed S.
    PHYSICA SCRIPTA, 2021, 96 (12)
  • [34] Crank-Nicolson finite difference scheme for the Rosenau-Burgers equation
    Hu, Bing
    Xu, Youcai
    Hu, Jinsong
    APPLIED MATHEMATICS AND COMPUTATION, 2008, 204 (01) : 311 - 316
  • [35] A LINEARIZED CRANK-NICOLSON/LEAPFROG SCHEME FOR THE LANDAU-LIFSHITZ EQUATION
    Liu, Mingru
    Huang, Pengzhan
    He, Yinnian
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2023, 53 (03) : 821 - 837
  • [36] Crank-Nicolson scheme for abstract linear systems
    Piskarev, Sergey
    Zwart, Hans
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2007, 28 (5-6) : 717 - 736
  • [37] Invariantization of the Crank-Nicolson method for Burgers' equation
    Kim, Pilwon
    PHYSICA D-NONLINEAR PHENOMENA, 2008, 237 (02) : 243 - 254
  • [38] An energy-preserving Crank-Nicolson Galerkin spectral element method for the two dimensional nonlinear Schrodinger equation
    Li, Haochen
    Mu, Zhenguo
    Wang, Yushun
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 344 : 245 - 258
  • [39] Convergence of the Crank-Nicolson extrapolation scheme for the Korteweg-de Vries equation
    Wang, Pengfei
    Huang, Pengzhan
    APPLIED NUMERICAL MATHEMATICS, 2019, 143 : 88 - 96
  • [40] A four-order alternating segment Crank-Nicolson scheme for the dispersive equation
    Zhang, Qingjie
    Wang, Wenqia
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2009, 57 (02) : 283 - 289