Impacts of climate change on hydrological droughts at basin scale: A case study of the Weihe River Basin, China

被引:40
|
作者
Zhao, Panpan [1 ,2 ]
Lu, Haishen [3 ]
Yang, Huicai [4 ]
Wang, Wenchuan [1 ]
Fu, Guobin [2 ]
机构
[1] North China Univ Water Resources & Elect Power, Inst Water Conservancy, Zhengzhou 450045, Henan, Peoples R China
[2] CSIRO Land & Water, Private Bag 5, Wembley, WA 6913, Australia
[3] Hohai Univ, Coll Hydrol & Water Resources, State Key Lab Hydrol Water Resource & Hydraul Eng, Nanjing 210098, Jiangsu, Peoples R China
[4] Hebei GEO Univ, Sch Land Resources & Urban & Rural Planning, Shijiazhuang 050031, Hebei, Peoples R China
基金
中国国家自然科学基金;
关键词
Climate change; CMIP5; Soil and water assessment tool (SWAT); Streamflow drought index (SDI); The Weihe river basin; Uncertainty; RUNOFF GENERATION; SWAT MODEL; UNCERTAINTIES; STREAMFLOW; TRENDS; VARIABILITY;
D O I
10.1016/j.quaint.2019.02.022
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
The likelihood changes of the numbers of occurrences, duration and intensity of hydrological droughts in the Weihe River Basin in China were investigated by using the bias-corrected future climate projections from three selected Global Climate Models (GCMs) with two emission scenarios (RCP 4.5, RCP 8.5), and Soil and Water Assessment Tool (SWAT) hydrological model. Results showed that 1) The frequency of hydrological droughts, drought durations and intensities would have obvious increasing trends in the future under dry GCM condition. However, an opposite decreasing trend was shown under wet GCM condition; 2) Future precipitation changing direction and magnitudes were dominating factor for the likelihood changes of drought characteristics. Forty GCMs project a future precipitation change from - 3.42% to + 14.24%, which is the largest source of uncertainties. If the observed trends of precipitation and temperature during the last 50 years continue, then the Weihe River Basin would likely be in the dry condition of GCMs; 3) The impacts of temperature on hydrological droughts cannot be neglected and it has direct (evaporation and runoff generation) and larger magnitude indirect effects (precipitation patterns). The presented results have practical applications for regional drought mitigation planning under future climate changes.
引用
收藏
页码:37 / 46
页数:10
相关论文
共 50 条
  • [21] Effect of projected climate change on the hydrological regime of the Yangtze River Basin, China
    Yu, Zhongbo
    Gu, Huanghe
    Wang, Jigan
    Xia, Jun
    Lu, Baohong
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2018, 32 (01) : 1 - 16
  • [22] HYDROLOGICAL IMPACTS OF CLIMATE CHANGE IN A HUMID TROPICAL RIVER BASIN
    Madusudhanan, C. G.
    Eldho, T. I.
    Pai, D. S.
    PROCEEDINGS OF THE 36TH IAHR WORLD CONGRESS: DELTAS OF THE FUTURE AND WHAT HAPPENS UPSTREAM, 2015, : 6127 - 6133
  • [23] Impacts of climate change on hydrological processes in the Tibetan Plateau: a case study in the Lhasa River basin
    Liu, Wenfeng
    Xu, Zongxue
    Li, Fapeng
    Zhang, Lanying
    Zhao, Jie
    Yang, Hong
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2015, 29 (07) : 1809 - 1822
  • [24] Impacts of climate change on hydrological processes in the Tibetan Plateau: a case study in the Lhasa River basin
    Wenfeng Liu
    Zongxue Xu
    Fapeng Li
    Lanying Zhang
    Jie Zhao
    Hong Yang
    Stochastic Environmental Research and Risk Assessment, 2015, 29 : 1809 - 1822
  • [25] Impact of climate change on hydrological droughts in the upper Namhan River basin, Korea
    Jaewon Kwak
    Soojun Kim
    Vijay P. Singh
    Hung Soo Kim
    Duckgil Kim
    Seungjin Hong
    Keonhaeng Lee
    KSCE Journal of Civil Engineering, 2015, 19 : 376 - 384
  • [26] Impacts of climate change on hydrological processes in the headwater catchment of the Tarim River basin, China
    Liu, Zhaofei
    Xu, Zongxue
    Huang, Junxiong
    Charles, Stephen P.
    Fu, Guobin
    HYDROLOGICAL PROCESSES, 2010, 24 (02) : 196 - 208
  • [27] Isolating of climate and land surface contribution to basin runoff variability: A case study from the Weihe River Basin, China
    Deng, Wenjia
    Song, Jinxi
    Sun, Haotian
    Cheng, Dandong
    Zhang, Xuexian
    Liu, Jiangang
    Kong, Feihe
    Wang, Huiyuan
    Khan, Asif Jamal
    ECOLOGICAL ENGINEERING, 2020, 153 (153)
  • [28] Assessing the hydrological impacts of climate change in the headwater catchment of the Tarim River basin, China
    Liu, Zhaofei
    Xu, Zongxue
    Fu, Guobin
    Yao, Zhijun
    HYDROLOGY RESEARCH, 2013, 44 (05): : 834 - 849
  • [29] Impact of climate change on hydrological droughts in the upper Namhan River basin, Korea
    Kwak, Jaewon
    Kim, Soojun
    Singh, Vijay P.
    Kim, Hung Soo
    Kim, Duckgil
    Hong, Seungjin
    Lee, Keonhaeng
    KSCE JOURNAL OF CIVIL ENGINEERING, 2015, 19 (02) : 376 - 384
  • [30] Impacts of climate change and LULC change on runoff in the Jinsha River Basin
    Chen, Qihui
    Chen, Hua
    Zhang, Jun
    Hou, Yukun
    Shen, Mingxi
    Chen, Jie
    Xu, Chongyu
    JOURNAL OF GEOGRAPHICAL SCIENCES, 2020, 30 (01) : 85 - 102