On circles containing the maximum number of points

被引:6
作者
Akiyama, J
Ishigami, Y
Urabe, M
Urrutia, J
机构
[1] SCI UNIV TOKYO,DEPT MATH,SHINJUKU KU,TOKYO 162,JAPAN
[2] WASEDA UNIV,DEPT MATH,SHINJUKU KU,TOKYO 169,JAPAN
[3] TOKAI UNIV,DEPT MATH,KANAGAWA 25912,JAPAN
[4] UNIV OTTAWA,DEPT COMP SCI,OTTAWA,ON K1N 9B4,CANADA
关键词
D O I
10.1016/0012-365X(94)00076-U
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define B(x,y) to be the disk in the plane which has the points x,y as its diametral end points, Let Pi(B)(n) [or <(Pi)over bar(B)>(n)] be the largest number such that for every set [or every convex set]P of n points in R(2), there exist two points x, y is an element of P for which B(x, y) contains <(Pi)over bar(B)>(n) [or<(Pi)over bar(B)>(n)] points of P. We show that <(Pi)over bar(B)>(n) = <(Pi)over bar>(B)(n) = [n / 3] + 1.
引用
收藏
页码:15 / 18
页数:4
相关论文
共 4 条
[1]   A NOTE ON THE CIRCLE CONTAINMENT-PROBLEM [J].
HAYWARD, R .
DISCRETE & COMPUTATIONAL GEOMETRY, 1989, 4 (03) :263-264
[2]   SOME EXTREMAL RESULTS ON CIRCLES CONTAINING POINTS [J].
HAYWARD, R ;
RAPPAPORT, D ;
WENGER, R .
DISCRETE & COMPUTATIONAL GEOMETRY, 1989, 4 (03) :253-258
[3]  
ISHIGAMI Y, CONTAINMENT PROBLEMS
[4]   A COMBINATORIAL RESULT ON POINTS AND CIRCLES ON THE PLANE [J].
NEUMANNLARA, V ;
URRUTIA, J .
DISCRETE MATHEMATICS, 1988, 69 (02) :173-178