Using Deep Learning Predictors and Latent Dirichlet Allocation to Identify Key Issues Affecting Clients in Chilean Restaurants

被引:0
|
作者
Ferreira, Alejandro [1 ]
Gomez, Walter [1 ]
Kliebs, Ronald [2 ]
机构
[1] Univ La Frontera, Dept Ingn Matemat, Temuco, Chile
[2] Univ La Frontera, Dept Ingn Ind & Sistemas, Temuco, Chile
来源
2021 IEEE LATIN AMERICAN CONFERENCE ON COMPUTATIONAL INTELLIGENCE (LA-CCI) | 2021年
关键词
Deep learning; Natural language processing; Sentiment analysis; Text mining; Knowledge management; TRIPADVISOR REVIEWS; SOCIAL MEDIA; CLASSIFICATION;
D O I
10.1109/LA-CCI48322.2021.9769840
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this work, we use a general sentiment analysis methodology to train different Deep Learning predictors so that a proper quantitative valuation can be obtained based on qualitative information given by customers on social media (comments). We use Convolutional Neural Network and Long Short-Term Memory combined with different inputs including the body of the comments and its title. With the trained predictors we classify a large set of comments regarding negative positive customer experiences. Finally we use Latent Dirichlet Allocation algorithm to identify the specific issues appearing on the comments related to negative customer experience ratings.
引用
收藏
页数:6
相关论文
共 20 条
  • [1] Identification of Pavement Issues Using Latent Dirichlet Allocation Machine Learning
    Parsons, Timothy A.
    Pullen, Aaron
    AIRFIELD AND HIGHWAY PAVEMENTS 2023: INNOVATION AND SUSTAINABILITY IN AIRFIELD AND HIGHWAY PAVEMENTS TECHNOLOGY, 2023, : 185 - 193
  • [2] Text mining of Reddit posts: Using latent Dirichlet allocation to identify common parenting issues
    Westrupp, Elizabeth M.
    Greenwood, Christopher J.
    Fuller-Tyszkiewicz, Matthew
    Berkowitz, Tomer S.
    Hagg, Lauryn
    Youssef, George
    PLOS ONE, 2022, 17 (02):
  • [3] Initializing Deep Learning Based on Latent Dirichlet Allocation for Document Classification
    Jeon, Hyung-Bae
    Lee, Soo-Young
    NEURAL INFORMATION PROCESSING, ICONIP 2016, PT III, 2016, 9949 : 634 - 641
  • [4] A text classification model constructed by Latent Dirichlet Allocation and Deep Learning
    Liu, Yu
    Jin, Zhengping
    PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE ON MECHATRONICS, MATERIALS, CHEMISTRY AND COMPUTER ENGINEERING 2015 (ICMMCCE 2015), 2015, 39 : 2501 - 2504
  • [5] Terminological ontology learning and population using latent Dirichlet allocation
    Colace, Francesco
    De Santo, Massimo
    Greco, Luca
    Amato, Flora
    Moscato, Vincenzo
    Picariello, Antonio
    JOURNAL OF VISUAL LANGUAGES AND COMPUTING, 2014, 25 (06): : 818 - 826
  • [6] Learning and Using Context on a Humanoid Robot Using Latent Dirichlet Allocation
    Celikkanat, Hande
    Orhan, Guner
    Pugeault, Nicolas
    Guerin, Frank
    Sahin, Erol
    Kalkan, Sinan
    FOUTH JOINT IEEE INTERNATIONAL CONFERENCES ON DEVELOPMENT AND LEARNING AND EPIGENETIC ROBOTICS (IEEE ICDL-EPIROB 2014), 2014, : 201 - 207
  • [7] Max-Margin Deep Diverse Latent Dirichlet Allocation With Continual Learning
    Chen, Wenchao
    Chen, Bo
    Liu, Yingqi
    Cao, Xuefei
    Zhao, Qianru
    Zhang, Hao
    Tian, Long
    IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (07) : 5639 - 5653
  • [8] The microblog sentiment analysis based on latent dirichlet allocation and deep learning approaches
    Ma, Xiaowen
    JOURNAL OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING, 2024, 24 (4-5) : 3113 - 3135
  • [9] Learning Context on a Humanoid Robot using Incremental Latent Dirichlet Allocation
    Celikkanat, Hande
    Orhan, Guner
    Pugeault, Nicolas
    Guerin, Frank
    Sahin, Erol
    Kalkan, Sinan
    IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, 2016, 8 (01) : 42 - 59
  • [10] Learning a Weather Dictionary of Atmospheric Patterns Using Latent Dirichlet Allocation
    Fery, Lucas
    Dubrulle, Berengere
    Podvin, Berengere
    Pons, Flavio
    Faranda, Davide
    GEOPHYSICAL RESEARCH LETTERS, 2022, 49 (09)