MADALINE Neural Network for Parameter Estimation of LTI MIMO Systems

被引:0
|
作者
Zhang Wenle [1 ]
机构
[1] Univ Arkansas, Dept Engn Technol, Little Rock, AR 72204 USA
来源
PROCEEDINGS OF THE 29TH CHINESE CONTROL CONFERENCE | 2010年
关键词
System Identification; MIMO; Parameter Estimation; Neural Network; MADALINE;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, the Multi-AD Aptive LINear Element (MADA LINE) neural network was generalized for On-line System identification of linear time-invariant (LTI) Multi-Input Multi-Output (MIMO) systems. Based on the input output polynomial model which can be easily transformed into the row canonical state space model, Tapped delay line are introduced, so the MADALINE becomes recurrent in nature and thus is suitable for parameter estimation of such systems. The MADALINE can then be setup under the assumption that the system structure is known in advance. The estimated parameters are obtained as the weights of trained individual neurons of the MADALINE. The method is implemented in MATLAB and simulation study was then performed on a few well known examples. Simulation results show that the algorithms offer satisfactory performance. This work is extended from our previous work on Single Input Single Output such systems ([16]).
引用
收藏
页码:1346 / 1351
页数:6
相关论文
共 50 条
  • [1] Adaptive Parameter Estimation in LTI Systems
    Kapetina, Mirna N.
    Rapaic, Milan R.
    Pisano, Alessandro
    Jelicic, Zoran D.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2019, 64 (10) : 4188 - 4195
  • [2] MADALINE Neural Network with Truncated Momentum for LTV MIMO System Identification
    Zhang, Wenle
    PROCEEDINGS OF THE 2012 24TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2012, : 1579 - 1584
  • [3] Combined MRAC for Unknown MIMO LTI Systems With Parameter Convergence
    Roy, Sayan Basu
    Bhasin, Shubhendu
    Kar, Indra Narayan
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2018, 63 (01) : 283 - 290
  • [4] Parameter Estimation and Model Order Identification of LTI Systems
    Varanasi, Santhosh Kumar
    Jampana, Phanindra
    IFAC PAPERSONLINE, 2016, 49 (07): : 1002 - 1007
  • [5] Neural network architectures for parameter estimation of dynamical systems
    Raol, JR
    Madhuranath, H
    IEE PROCEEDINGS-CONTROL THEORY AND APPLICATIONS, 1996, 143 (04): : 387 - 394
  • [6] Joint parameter estimation for MIMO systems
    Broadband Wireless Communications Lab., Research Inst. of Information Security and Privacy, Xidian Univ., Xi'an 710071, China
    不详
    Xi'an Dianzi Keji Daxue Xuebao, 2008, 2 (189-195):
  • [7] Parameter Estimation for Dynamical Systems Using a Deep Neural Network
    Dufera, Tamirat Temesgen
    Seboka, Yadeta Chimdessa
    Fresneda Portillo, Carlos
    APPLIED COMPUTATIONAL INTELLIGENCE AND SOFT COMPUTING, 2022, 2022
  • [8] Neural Network-Based Parameter Estimation in Dynamical Systems
    Kastoris, Dimitris
    Giotopoulos, Kostas
    Papadopoulos, Dimitris
    INFORMATION, 2024, 15 (12)
  • [9] MIMO System Identification with Extended MADALINE Neural Network Trained by Levenberg-Marquardt Method
    Zhang, Wenle
    26TH CHINESE CONTROL AND DECISION CONFERENCE (2014 CCDC), 2014, : 1191 - 1196
  • [10] Order and Parameter Estimation of Linear Systems with A Generalized ADALINE Neural Network
    Zhang, Wenle
    Kim, Jung H.
    PROCEEDINGS OF THE 2016 12TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2016, : 328 - 332