Nonlinear and nonparametric regression and instrumental variables

被引:43
作者
Carroll, RJ [1 ]
Ruppert, D
Crainiceanu, CM
Tosteson, TD
Karagas, MR
机构
[1] Texas A&M Univ, Dept Stat & Fac Nutr & Toxicol, College Stn, TX 77843 USA
[2] Cornell Univ, Sch Operat Res & Ind Engn, Ithaca, NY 14853 USA
[3] Johns Hopkins Univ, Dept Biostat, Baltimore, MD 21205 USA
[4] Dartmouth Coll Sch Med, Hanover, NH 03755 USA
关键词
Bayesian methods; identifiability; measurement error; simulation extrapolation; splines; structural modeling;
D O I
10.1198/016214504000001088
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider regression when the predictor is measured with error and an instrumental variable (TV) is available. The regression function., or nonparametrically. Our major new result shows that the regression function and all parameters in can be modeled linearly, nonlinearly the measurement error model are identified under relatively weak conditions, much weaker than previously known to imply identifiability. In addition, we exploit a characterization of the IV estimator as a classical "correction for attenuation" method based on a particular estimate of the variance of the measurement error. This estimate of the measurement error variance allows us to construct functional nonparametric regression estimators making no assumptions about the distribution of the unobserved predictor and structural estimators that use parametric assumptions about this distribution. The functional estimators uses, simulation extrapolation or deconvolution kernels and the structural method uses Bayesian Markov chain Monte Carlo. The Bayesian estimator is found to significantly outperform the functional approach.
引用
收藏
页码:736 / 750
页数:15
相关论文
共 44 条
[1]   BAYESIAN-ANALYSIS OF BINARY AND POLYCHOTOMOUS RESPONSE DATA [J].
ALBERT, JH ;
CHIB, S .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1993, 88 (422) :669-679
[2]   2-STAGE INSTRUMENTAL VARIABLE ESTIMATORS FOR THE NONLINEAR ERRORS-IN-VARIABLES MODEL [J].
AMEMIYA, Y .
JOURNAL OF ECONOMETRICS, 1990, 44 (03) :311-332
[3]  
AZZALINI A, 1985, SCAND J STAT, V12, P171
[4]  
Barron A, 1999, ANN STAT, V27, P536
[5]  
Bernardo J., 2009, Bayesian theory
[6]   Bayesian smoothing and regression splines for measurement error problems [J].
Berry, SM ;
Carroll, RJ ;
Ruppert, D .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2002, 97 (457) :160-169
[7]   Instrumental variable estimation in generalized linear measurement error models [J].
Buzas, JS ;
Stefanski, LA .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1996, 91 (435) :999-1006
[8]   Asymptotics for the SIMEX estimator in nonlinear measurement error models [J].
Carroll, RJ ;
Kuchenhoff, H ;
Lombard, F ;
Stefanski, LA .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1996, 91 (433) :242-250
[9]   Nonparametric regression in the presence of measurement error [J].
Carroll, RJ ;
Maca, JD ;
Ruppert, D .
BIOMETRIKA, 1999, 86 (03) :541-554
[10]   MEASUREMENT ERROR, INSTRUMENTAL VARIABLES AND CORRECTIONS FOR ATTENUATION WITH APPLICATIONS TO METAANALYSES [J].
CARROLL, RJ ;
STEFANSKI, LA .
STATISTICS IN MEDICINE, 1994, 13 (12) :1265-1282