An explicit Lyapunov function for reflection symmetric parabolic partial differential equations on the circle

被引:11
作者
Fiedler, B. [1 ]
Grotta-Ragazzo, C. [2 ]
Rocha, C. [3 ]
机构
[1] Free Univ Berlin, Inst Math, Berlin, Germany
[2] Univ Sao Paulo, Inst Matemat & Estat, Sao Paulo, Brazil
[3] Inst Super Tecn, Lisbon, Portugal
关键词
partial differential equations; variational methods; convection; energy functional; advection; reaction-diffusion equations; periodic boundary conditions; ROTATING WAVES; DYNAMICS;
D O I
10.1070/RM2014v069n03ABEH004897
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An explicit Lyapunov function is constructed for scalar parabolic reaction-advection-diffusion equations under periodic boundary conditions. The non-linearity is assumed to be even with respect to the advection term. The method followed was originally suggested by H. Matano for, and limited to, separated boundary conditions.
引用
收藏
页码:419 / 433
页数:15
相关论文
共 20 条
[11]  
Matano H., 1997, Discr. Cont. Dyn. Sys, V3, P1, DOI [10.3934/dcds.1997.3.1, DOI 10.3934/DCDS.1997.3.1]
[12]  
Matano H., 1988, Nonlinear Diffusion Equations and Their Equilibrium States II, P139, DOI DOI 10.1007/978-1-4613-9608-6_8
[13]   SEMILINEAR PARABOLIC PROBLEMS DEFINE SEMIFLOWS ON CK SPACES [J].
MORA, X .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 278 (01) :21-55
[14]  
Oleinik O. A., 1961, Russ. Math. Surv, V16, P105, DOI DOI 10.1070/RM1961V016N05ABEH004114
[15]  
Pazy A., 1993, SEMIGROUPS LINEAR OP, DOI DOI 10.1007/978-1-4612-5561-1
[16]   Scalar Autonomous Second Order Ordinary Differential Equations [J].
Ragazzo, C. .
QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2012, 11 (02) :277-415
[17]   DYNAMICS OF PERIODICALLY FORCED PARABOLIC EQUATIONS ON THE CIRCLE [J].
SANDSTEDE, B ;
FIEDLER, B .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1992, 12 :559-571
[18]  
Sturm C., 1836, J. Math. Pures Appl., P373
[19]  
Zelenyak T. I., 1997, QUALITATIVE THEORY 1
[20]  
Zelenyak TI., 1968, Differ. Uravn, V4, P34