An explicit Lyapunov function for reflection symmetric parabolic partial differential equations on the circle

被引:11
作者
Fiedler, B. [1 ]
Grotta-Ragazzo, C. [2 ]
Rocha, C. [3 ]
机构
[1] Free Univ Berlin, Inst Math, Berlin, Germany
[2] Univ Sao Paulo, Inst Matemat & Estat, Sao Paulo, Brazil
[3] Inst Super Tecn, Lisbon, Portugal
关键词
partial differential equations; variational methods; convection; energy functional; advection; reaction-diffusion equations; periodic boundary conditions; ROTATING WAVES; DYNAMICS;
D O I
10.1070/RM2014v069n03ABEH004897
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An explicit Lyapunov function is constructed for scalar parabolic reaction-advection-diffusion equations under periodic boundary conditions. The non-linearity is assumed to be even with respect to the advection term. The method followed was originally suggested by H. Matano for, and limited to, separated boundary conditions.
引用
收藏
页码:419 / 433
页数:15
相关论文
共 20 条
[1]   THE ZERO-SET OF A SOLUTION OF A PARABOLIC EQUATION [J].
ANGENENT, S .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1988, 390 :79-96
[2]   THE DYNAMICS OF ROTATING WAVES IN SCALAR REACTION DIFFUSION-EQUATIONS [J].
ANGENENT, SB ;
FIEDLER, B .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 307 (02) :545-568
[3]  
Babin A. V., 1992, STUD MATH APPL, V25
[4]  
Chafee N., 1974, Applicable Analysis, V4, P17, DOI 10.1080/00036817408839081
[5]   Heteroclinic orbits between rotating waves of semilinear parabolic equations on the circle [J].
Fiedler, B ;
Rocha, C ;
Wolfrum, M .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 201 (01) :99-138
[6]   A POINCARE-BENDIXSON THEOREM FOR SCALAR REACTION DIFFUSION-EQUATIONS [J].
FIEDLER, B ;
MALLETPARET, J .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1989, 107 (04) :325-345
[7]   Global dynamics of blow-up profiles in one-dimensional reaction diffusion equations [J].
Fiedler, Bernold ;
Matano, Hiroshi .
JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2007, 19 (04) :867-893
[8]   STURM GLOBAL ATTRACTORS FOR S1-EQUIVARIANT PARABOLIC EQUATIONS [J].
Fiedler, Bernold ;
Rocha, Carlos ;
Wolfrum, Matthias .
NETWORKS AND HETEROGENEOUS MEDIA, 2012, 7 (04) :617-659
[9]   Renormalization group flow of the two-dimensional hierarchical Coulomb gas [J].
Guidi, LF ;
Marchetti, DHU .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2001, 219 (03) :671-702
[10]  
Henry D., 1981, GEOMETRIC THEORY SEM