ON SHORT SUMS OF TRACE FUNCTIONS

被引:19
作者
Fouvry, Etienne [1 ]
Kowalski, Emmanuel [2 ]
Michel, Philippe [3 ]
Raju, Chandra Sekhar [4 ]
Rivat, Joel [5 ]
Soundararajan, Kannan [4 ]
机构
[1] Univ Paris Saclay, Univ Paris Sud, CNRS, Lab Math Orsay, F-91405 Orsay, France
[2] ETH, D MATH, Razmistr 101, CH-8092 Zurich, Switzerland
[3] Ecole Polytech Fed Lausanne, Mathgeom TAN, Stn 8, CH-1015 Lausanne, Switzerland
[4] Dept Math, 450 Serra Mall, Stanford, CA 94305 USA
[5] Univ Aix Marseille, Inst Math Marseille, Case 907, 163 Ave Luminy, F-13288 Marseille 9, France
基金
美国国家科学基金会; 奥地利科学基金会; 瑞士国家科学基金会;
关键词
Short exponential sums; trace functions; van der Corput lemma; completion method; Riemann Hypothesis over finite fields;
D O I
10.5802/aif.3087
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider sums of oscillating functions on intervals in cyclic groups of size close to the square root of the size of the group. We first prove non-trivial estimates for intervals of length slightly larger than this square root (bridging the "Polya-Vinogradov gap" in some sense) for bounded functions with bounded Fourier transforms. We then prove that the existence of non-trivial estimates for ranges slightly below the square-root bound is stable under the discrete Fourier transform. We then give applications related to trace functions over finite fields.
引用
收藏
页码:423 / 449
页数:27
相关论文
共 24 条
[1]  
[Anonymous], 1997, The Hardy-Littlewood Method
[2]  
[Anonymous], MATH ITS APPL SOVIET
[3]  
BIRCH BJ, 1968, J LONDON MATH SOC, V43, P57
[4]  
BLOMER V., AM J MATH IN PRESS
[5]   A Remark on Solutions of the Pell Equation [J].
Bourgain, J. .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (10) :2841-2855
[6]   Sumsets of reciprocals in prime fields and multilinear Kloosterman sums [J].
Bourgain, J. ;
Garaev, M. Z. .
IZVESTIYA MATHEMATICS, 2014, 78 (04) :656-707
[7]  
Burgess D. A., 1963, Proc. Lond. Math. Soc, V3, P524
[8]  
Chang M.-C., 2010, BOLYAI SOC MATH STUD, V21, P243, DOI DOI 10.1007/978-3-642-14444-8_5
[9]  
Enflo P., 1995, QUAEST MATH, V18, P309
[10]  
FOUVRY E., 2015, C GIORG 2013 2014, V5, P7