Maximal unitarity for the four-mass double box

被引:25
作者
Johansson, Henrik [1 ]
Kosower, David A. [2 ]
Larsen, Kasper J. [3 ]
机构
[1] CERN, Dept Phys, Theory Grp, CH-1211 Geneva 23, Switzerland
[2] CEA Saclay, Inst Phys Theor, F-91191 Gif Sur Yvette, France
[3] Nikhef, Theory Grp, NL-1098 XG Amsterdam, Netherlands
基金
欧洲研究理事会;
关键词
ONE-LOOP AMPLITUDES; SCATTERING-AMPLITUDES; REDUCTION; INTEGRALS; CUT;
D O I
10.1103/PhysRevD.89.125010
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We extend the maximal-unitarity formalism at two loops to double-box integrals with four massive external legs. These are relevant for higher-point processes, as well as for heavy vector rescattering, VV -> VV. In this formalism, the two-loop amplitude is expanded over a basis of integrals. We obtain formulas for the coefficients of the double-box integrals, expressing them as products of tree-level amplitudes integrated over specific complex multidimensional contours. The contours are subject to the consistency condition that integrals over them annihilate any integrand whose integral over real Minkowski space vanishes. These include integrals over parity-odd integrands and total derivatives arising from integration-by-parts (IBP) identities. We find that, unlike the zero- through three-mass cases, the IBP identities impose no constraints on the contours in the four-mass case. We also discuss the algebraic varieties connected with various double-box integrals and show how discrete symmetries of these varieties largely determine the constraints.
引用
收藏
页数:17
相关论文
共 109 条
[1]   Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC [J].
Aad, G. ;
Abajyan, T. ;
Abbott, B. ;
Abdallah, J. ;
Khalek, S. Abdel ;
Abdelalim, A. A. ;
Abdinov, O. ;
Aben, R. ;
Abi, B. ;
Abolins, M. ;
AbouZeid, U. S. ;
Abramowicz, H. ;
Abreu, H. ;
Acharya, B. S. ;
Adamczyk, L. ;
Adams, D. L. ;
Addy, T. N. ;
Adelman, J. ;
Adomeit, S. ;
Adragna, P. ;
Adye, T. ;
Aefsky, S. ;
Aguilar-Saavedra, J. A. ;
Agustoni, M. ;
Aharrouche, M. ;
Ahlen, S. P. ;
Ahles, F. ;
Ahmad, A. ;
Ahsan, M. ;
Aielli, G. ;
Akdogan, T. ;
Akesson, T. P. A. ;
Akimoto, G. ;
Akimov, A. V. ;
Alam, M. S. ;
Alam, M. A. ;
Albert, J. ;
Albrand, S. ;
Aleksa, M. ;
Aleksandrov, I. N. ;
Alessandria, F. ;
Alexa, C. ;
Alexander, G. ;
Alexandre, G. ;
Alexopoulos, T. ;
Alhroob, M. ;
Aliev, M. ;
Alimonti, G. ;
Alison, J. ;
Allbrooke, B. M. M. .
PHYSICS LETTERS B, 2012, 716 (01) :1-29
[2]  
Anastasiou C, 2004, J HIGH ENERGY PHYS
[3]   Planar amplitudes in maximally supersymmetric Yang-Mills theory [J].
Anastasiou, C ;
Dixon, L ;
Bern, Z ;
Kosower, DA .
PHYSICAL REVIEW LETTERS, 2003, 91 (25) :251602-251602
[4]   Unitarity cuts and reduction to master integrals in d dimensions for one-loop amplitudes [J].
Anastasiou, Charalampos ;
Britto, Ruth ;
Feng, Bo ;
Kunszt, Zoltan ;
Mastrolia, Pierpaolo .
JOURNAL OF HIGH ENERGY PHYSICS, 2007, (03)
[5]   d-dimensional unitarity cut method [J].
Anastasiou, Charalampos ;
Britto, Ruth ;
Feng, Bo ;
Kunszt, Zoltan ;
Mastrolia, Pierpaolo .
PHYSICS LETTERS B, 2007, 645 (2-3) :213-216
[6]  
[Anonymous], ARXIV13081697
[7]  
[Anonymous], P SCI LL2012
[8]  
[Anonymous], 2012, POS LL2012
[9]   Local integrals for planar scattering amplitudes [J].
Arkani-Hamed, N. ;
Bourjaily, J. ;
Cachazo, F. ;
Trnka, J. .
JOURNAL OF HIGH ENERGY PHYSICS, 2012, (06)
[10]   A note on polytopes for scattering amplitudes [J].
Arkani-Hamed, N. . ;
Bourjaily, J. ;
Cachazo, F. . ;
Hodges, A. . ;
Trnka, J. . .
JOURNAL OF HIGH ENERGY PHYSICS, 2012, (04)