Land-use classification of multispectral aerial images using artificial neural networks

被引:20
作者
Ashish, D. [2 ]
McClendon, R. W. [2 ,3 ]
Hoogenboom, G. [1 ]
机构
[1] Univ Georgia, Dept Biol & Agr Engn, Griffin, GA 30223 USA
[2] Univ Georgia, Ctr Artificial Intelligence, Athens, GA 30602 USA
[3] Univ Georgia, Dept Biol & Agr Engn, Athens, GA 30602 USA
基金
美国国家航空航天局;
关键词
FUZZY SUPERVISED CLASSIFICATION; COVER CLASSIFICATION; STATISTICAL-METHODS; ACCURACY ASSESSMENT; SPATIAL-RESOLUTION; TEXTURAL FEATURES; SEGMENTATION; ALGORITHM;
D O I
10.1080/01431160802549187
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
During the past decade, there have been significant improvements in remote sensing technologies, which have provided high-resolution data at shorter time intervals. Considerable effort has been directed towards developing new classification strategies for analysing this imagery, but the use of artificial intelligence-based analysis techniques has been somewhat limited. The aim of this study was to develop an artificial neural network (ANN)-based technique for the classification of multispectral aerial images for land use in agricultural and environmental applications. The specific land-use classes included water, forest, and several types of agricultural fields. Multispectral images at a 1-m resolution were obtained for the state of Georgia, USA from a Geographic Information Systems (GIS) data clearinghouse. These false-colour images contained green, red and infrared true-colour information. Three approaches were used for the preparation of the inputs to the ANN. These included histograms of the pixel intensities, textural parameters extracted from the image, and matrices of the pixels for spatial information. A probabilistic neural network was used. Seven hundred images were used for model development and 175 for independent model evaluation. The overall accuracy for the evaluation data set was 74% for the histogram approach, 71% for the spatial approach and 89% for the textural approach. The evaluation of ANNs based on various combinations of all three approaches did not show an improvement in accuracy. We also found that some approaches could be used selectively for certain classes. For example, the textural approach worked best for forest classes. For future studies, edge detection prior to classification, with more careful selection of each class, should be included for land-use classification of multispectral images.
引用
收藏
页码:1989 / 2004
页数:16
相关论文
共 48 条
[1]  
Ashish D, 2004, T ASAE, V47, P1813, DOI 10.13031/2013.17598
[2]   URBAN AREA CLASSIFICATION BY MULTISPECTRAL SPOT IMAGES [J].
BARALDI, A ;
PARMIGGIANI, F .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1990, 28 (04) :674-680
[3]   NEURAL NETWORK APPROACHES VERSUS STATISTICAL-METHODS IN CLASSIFICATION OF MULTISOURCE REMOTE-SENSING DATA [J].
BENEDIKTSSON, JA ;
SWAIN, PH ;
ERSOY, OK .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1990, 28 (04) :540-552
[4]   MULTISPECTRAL CLASSIFICATION OF LANDSAT-IMAGES USING NEURAL NETWORKS [J].
BISCHOF, H ;
SCHNEIDER, W ;
PINZ, AJ .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1992, 30 (03) :482-490
[5]   Comparative accuracies of artificial neural networks and discriminant analysis in predicting forest cover types from cartographic variables [J].
Blackard, JA ;
Dean, DJ .
COMPUTERS AND ELECTRONICS IN AGRICULTURE, 1999, 24 (03) :131-151
[6]   COOCCURRENCE MATRICES FOR SMALL REGION TEXTURE MEASUREMENT AND COMPARISON [J].
CARLSON, GE ;
EBEL, WJ .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 1995, 16 (08) :1417-1423
[7]   Computerized classification of Mediterranean vegetation using panchromatic aerial photographs [J].
Carmel, Y ;
Kadmon, R .
JOURNAL OF VEGETATION SCIENCE, 1998, 9 (03) :445-454
[8]   STATISTICAL GEOMETRICAL FEATURES FOR TEXTURE CLASSIFICATION [J].
CHEN, YQ ;
NIXON, MS ;
THOMAS, DW .
PATTERN RECOGNITION, 1995, 28 (04) :537-552
[9]   A THEORETICAL COMPARISON OF TEXTURE ALGORITHMS [J].
CONNERS, RW ;
HARLOW, CA .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1980, 2 (03) :204-222
[10]   Improving classical contextual classifications [J].
Cortijo, FJ ;
De La Blanca, NP .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 1998, 19 (08) :1591-1613